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ABSTRACT  

Statulevičius, V. Investigation of market expected returns and volatility of DJIA through analysis 

of options and predictions [Manuscript]: Master Thesis: economics. 

Vilnius, ISM University of Management and Economics, 2011.   

This paper aims to provide an innovative nonparametric approach to extract information about 

the equities market out of prediction markets. The procedure is carefully laid out and empirically 

tested on DJIA contracts in prediction markets. Results show that market expected DJIA values 

are not distributed normally or lognormally. A Jiang and Tian (2005) nonparametric implied 

volatility extraction method is applied to DJIA options. This paper also overviews prediction 

markets and their theoretical and empirical support. 

 

Keywords: Prediction markets, Implied volatility, Options, Nonparametric modelling 
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SANTRAUKA  

Statulevičius, V. Tikėtinų DJIA verčių ir grąžos svyravimų tyrimas analizuojant pasirinkimo 

sandorių ir prognozių rinkas [Rankraštis]: magistro baigiamasis darbas: ekonomika.  

Vilnius, ISM Vadybos ir ekonomikos universitetas, 2011. 

Šis darbas siekia pademonstruoti inovatyvų neparametrinį informacijos apie akcijų rinką 

išgavimą iš prognozių rinkos. Metodas kruopščiai aprašomas ir empiriškai patikrinamas 

naudojantis DJIA sandoriais prognozių rinkoje.  Rezultatai rodo kad rinkos tikimasis DJIA verčių 

skirstinys near normalinis ar lognormalinis. Taip pat, naudojantis Jiang ir Tian (2005) 

neparametriniu grąžos svyravimų išgavimo metodu, surenkama informacija iš DJIA pasirinkimo 

sandorių rinkos. Šis darbas taip pat apžvelgia prognozių rinkas jų teorinius bei empirinius 

pagrindus. 

 

Raktažodžiai: Prognozių rinka, Numanomas kintamumas, Pasirinkimo sandoriai, Neparametriniai 

modeliavimai 
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Conventional terminology and definitions 

DJIA – Dow Jones Industrial Average 

S&P100 – Standard and Poor’s 100  

DJX – options based on DJIA 

B-S – Black-Scholes option pricing model 

M-F – model-free (abbreviation used in discussions of implied volatility calculations) 

Call option - gives the holder a right but not an obligation to buy an asset at a predetermined price 

(strike) at a predetermined future date (expiration date) 

Put option - gives the holder a right but not an obligation to sell an asset at a predetermined price 

(strike) at a predetermined future date (expiration date) 

In-the-money (ITM) options are options that would be exercised if the current asset spot price 

was observed at expiration 

Out-of-the-money (OTM) options are options that would not be exercised if the current asset spot 

price was observed at expiration 

At-the-money (ATM) options are located between ITM and OTM options with regard to strike 

price. In particular their strike price and current spot price are approximately equal (usually – 

option with the absolute lowest difference between strike price and spot price is called at-the-

money) 

Moneyness – ratio of strike price to underlying asset price, which describes how close an option 

is to being exercised. If moneyness is above 1, then a call option should be exercised. 

CDF – cumulative distribution function. A CDF “describes the probability that a variate X takes 

on a value less than or equal to a number x” (Weisstein, 2011). See part Probability density 

function and cumulative distribution function for a more detailed description 
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PDF – probability density function. PDF maps variate X values to probabilities. See part 

Probability density function and cumulative distribution function for a more detailed description 

Volatility – standard deviation of returns 

For purposes of clarity and expedience, I use the following terminology to distinguish between 

different types of standard deviations: 

Predicted standard deviation – standard deviation calculated using prediction market data 

Implied volatility – volatility (standard deviation of returns) calculated using option data 

Black-Scholes (B-S) volatility – implied volatility calculated using B-S model from at-

the-money options 

Model-free (M-F) volatility – implied volatility calculated from a range of option prices 

using Jiang and Tian implementation of Britten-Jones and Neuberger method 

Realised volatility – calculated from DJIA prices between some time t and the end of the 

sample 
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Introduction 

There is a growing academic interest in prediction markets where contracts, contingent on 

uncertain future events, are traded (Wolfers & Zitzewitz, 2004). Traded future events range from 

sports results (e.g., Betfair) to more academically famous election results (e.g., Iowa Electronic 

Markets). These markets are different from simple betting in that there is no central bookmaker, 

that offers odds – market participants trade with each other.  

Even though these markets have only recently become of interest to academic researchers, they 

were widely used for elections outcomes before the Second World War (Rhode & Strumpf, 

2004). In this thesis a certain type of prediction contracts will be examined – forecasting Dow 

Jones Industrial Average (DJIA) value at a future date (operated by Intrade Inc.). The reason for 

this choice is twofold: first, the prediction can be compared to a much more liquid but similar 

market – options market, which will be also analysed. Second, most of the published research is 

concerned with elections and other events where there is one alternative source of predictions – 

subjective predictions of experts or general polls, therefore, this research will contribute to 

knowledge about prediction markets. 

The aim of this thesis is to increase the knowledge about information available on different 

markets, specifically, what information on a particular equity could be extracted from options and 

prediction markets. The main objective of the thesis is to show that it is empirically possible to 

extract previously unrecovered information from prediction markets. 

Predicted standard deviation of expected DJIA values at a future date will be extracted using 

prediction market data. Implied volatility estimates will be calculated from option markets and 

compared against realised volatility. Furthermore, the implied volatility measures will be 

evaluated for explanatory power of realisations of realised volatility using data from 2010. 

This research will contribute to understanding how information available on different markets 

can be used and whether prediction markets bring any useful new information to volatility 

analysis. 
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Literature review section will give an overview of research done on the subject of prediction 

markets and a broader overview of knowledge on implied volatility calculations with specific 

insights by some authors. Research problem definition will define the research problem, present 

gaps in current knowledge and raise questions the thesis will try to answer. In Research 

methodology I will present the data used and actual proposed methods of extracting information 

from prediction and options markets. Next, Empirical research results will compare the results 

and check for accuracy using actual values of the DJIA. Discussion part discusses the results in 

the context of previous research. Finally, I summarise the paper. 
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Literature review 

Literature review is structured in four parts: first, a short overview of risk-neutral probabilities, 

then a general overview of assumptions about asset price generating processes, followed by 

discussion of research on prediction markets, finally – more specific research on information in 

options markets. 

Risk-neutral probabilities 

Whenever empirically calculated probabilities are referred to in this paper they are risk-neutral 

probabilities, therefore I shortly present them in this part. 

Risk-neutral probability measure assumes that investors are risk neutral with respect to return 

volatility, therefore, they optimise only risk and return trade-off. These probability measures are 

calculated by assuming that investors are risk-neutral and then finding probabilities that would 

solve for the observed asset prices – the result is risk-neutral probability (Jackwerth, 2000). 

The problem with this assumption is that empirical research shows that investors are risk-averse 

(Jackwerth, 2000). Consequently, the risk-neutral probability measures will underestimate the 

likelihood of states of the world where out-of-the-money options are profitable, while 

overestimating in-the-money option probability of profit. This is because risk-averse investors 

will be willing to pay less than is “fair” (fair being equal to expected value under true probability 

measure) for deeply out-of-the-money options and pay more than is “fair” for options that are in 

the money, because of risk premiums attached. 

However, Jackwerth (2000) shows that discrepancies between risk-neutral and real probabilities 

are small. 

Asset price generating process and volatility 

DJIA realised volatility for comparisons with implied volatilities will be calculated following a 

simple commonly used method, described by Figlewski (1997). This part will also describe the 

assumed asset price generating process. 
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Figlewski (1997) first describes the basic assumption on stock price movements used in the 

Black-Scholes model (discussed in more detail later in this section) – the lognormal diffusion 

model. The lognormal diffusion model postulates that continuously compounded returns follow a 

normal distribution: 

𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + 𝜎𝑑𝑧, 

Equation 1 

where S is the asset price, dS is the asset price change over an infinitesimal time interval dt, μ is 

the mean return at an annual rate, dz is a time independent random disturbance with mean 0 and 

variance 1∙dt (a stochastic process known as Brownian motion), and σ is the volatility, i.e., the 

standard deviation of the annual return.” (Figlewski, 1997) Consequently, stock price levels 

follow a lognormal distribution (logarithm of S has a normal distribution) – S cannot fall below 0 

and is positively skewed. Figlewski (1997) also shows that: 

𝜎𝑎𝑛𝑛𝑢𝑎𝑙𝑖𝑠𝑒𝑑 = 𝜎√𝑃, where P is the number of trading days in a year. 

Equation 2 

In short, if returns follow a normal distribution with constant mean and variance, then, given the 

daily continuously compounded return standard deviation σ, annual asset volatility can be found 

by multiplying σ by the square root of the number of trading days in a year. 

Nevertheless, at this point it is reasonable to repeat empirical evidence against this process (taken 

from Figlewski (1997)): 

1. Returns distribution varies with time (σ is not constant); 

2. The process describes equilibrium prices, however, transaction prices are observed; 

3. Price changes are correlated over time (especially at short time intervals); 

4. Returns are not normally distributed – distributions display “fat tails” which are very 

unlikely if returns are normally distributed; 

5. Volatility mean reversion (related to point number 1) – periods with high or low volatility 

are followed by periods with moderate volatility. 
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Despite the presented evidence against, assumption that stock price levels follow a lognormal 

distribution is a good estimate for the purposes of calculating Black-Scholes implied volatility. 

Andersen and Bollerslev (1998) present evidence that realised volatility is best calculated using 

intra-day quotes at 5-minute intervals, however, this data is unavailable to me, therefore daily 

logarithmic returns will be used for estimation. In this work realised annual volatility until 

expiration is calculated following this formula: 

𝜎𝑡 =  √
∑ (𝑟𝑖−�̅�)2𝑇

𝑖=𝑡

𝑇−𝑡−1
× (𝑇 − 𝑡), 

Equation 3 

where ri is the DJIA daily logarithmic return and (T-t) is the time until expiration (T is expiration 

date, t is the current period), �̅� is the mean logarithmic return over the period. 

Problem of telescoping data 

Hansen, Prabhala, and Christensen (2001) discuss a problem relevant for volatility estimations 

using options data. Their observation is that most of the studies using options data for volatility 

estimations (B-S volatility or implied binomial trees) try to use as much data as possible, which 

means using options with all strike prices and maturities. They find that using this data without 

proper techniques leads to non-converging regression coefficients and diverging t-statistics. 

The cause of this problem lies in the use of the data – intervals to estimate realised volatility to 

regress against the implied volatility. 

The cause of the problem is that almost the same data is used to calculate consecutive estimates 

of realised volatility. For example, let an option expire at t = 252, then current realised volatility 

(at t = 0) until the expiration of the option is calculated using returns for periods t = 1 to 252. 

Move forward one period (t = 1) – volatility is calculated using returns for periods t = 2 to 252. 

Continuing this procedure shows that realised volatility estimates are based on almost the same 

data if they are sampled daily for such a long interval; the “telescoping” part of the problem is 

due to the shortening of data series to calculate realised volatility. 
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Prediction markets 

Three papers by Wolfers and Zitzewitz are presented in this section in addition to a paper by 

Rhode and Strumpf. 

Wolfers and Zitzewitz (2004) present various prediction market contracts and shortly describe 

what information is available in those markets. The most simple prediction market contract is a 

“winner-take-all” contract where the contract costs $c and pays off $1 if a particular event occurs, 

e.g. DJIA is above 8,000 points on the 31st of December, 2010. For this type of contract the price 

$c is the risk-neutral probability that the event will occur – the aggregate market belief. 

Index contracts pay $1 “based on a number that rises or falls, like the percentage of the vote 

received by a candidate” (2004) and they reveal market expectation of that number. Finally, 

Wolfers et al. (2004) explain the spread contract. In the context of elections, say, a contract costs 

$1 and pays out $2 if a candidate captures more than y% of votes, 0 otherwise. Market 

participants reveal what y would make them take the gamble with payoffs $2 and $0 – this 

contract reveals market expectation of the median. Median is a value such that 50% of values fall 

either side of the median; a risk-neutral market participant will only accept the spread gamble if 

he expects to win at least with 50% probability – the exact definition of the median. Any other 

percentile can be coaxed out of market participants by adjusting payoffs, e.g. spread contract 

costing $9 and paying out (in case of a “win”) $10 would reveal the 90th percentile of the 

distribution. 

Further in this paper the authors present evidence that prediction markets actually outperform 

other forecasts or that they are good predictors of the future. They draw on evidence from Iowa 

Electronic Markets, Saddam Security (discussed below), Hollywood Stock Exchange, and 

Economic Derivatives. They further find (in accordance with Rhode et al. (2004)) that arbitrage 

opportunities in prediction markets are, at least, difficult to discover. “Finally, the power of 

prediction markets derives from the fact that they provide incentives for truthful revelation, they 

provide incentives for research and information discovery, and the market provides an algorithm 

for aggregating opinions.” 
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Another paper by Wolfers and Zitzewitz (2006) presents a few simple models that show that this 

is not only true in practice, but also true in theory, less so “for prices close to $0 or $1, when the 

distribution of beliefs is either especially disperse, or when trading volumes are somehow 

constrained, or motivated by an unusual degree of risk-acceptance.” (2006) The strength of 

prediction markets are that they are robust theoretically – prices giving market belief about 

probability of the event – and practically – prediction markets are more accurate than pre-election 

polls in determining the winner at all time horizons (Berg, Nelson, & Rietz, 2007). 

Berg et al (2007) analyse US presidential and other elections since 1988 in order to evaluate the 

long-run efficiency of prediction markets. They use vote share contracts traded on Iowa 

Electronic Markets as prediction market forecast of the election result. Payoff of these contracts 

depends on the share of the vote captured by each candidate - $1 for every 1% of the share. As 

discussed by Wolfers et al. (2004), these index contracts reveal the market forecast of the vote 

share of each candidate. Berg et al (2007) compares these predictions and contemporaneous poll 

results (they mention a caveat that polls are designed to measure current voter sentiment, but they 

dismiss this because poll results are commonly used as election forecasts) against actual 

outcomes of the elections. They find that market prediction is better than poll forecast to the 

actual election outcome 74% of the time. They also find that for longer horizons (100 days to 

election at the margin) prediction markets are relatively more accurate than polls. 

One criticism of this theoretical robustness is concisely presented by David Schneider-Joseph 

(2004) – if prediction markets are used as a form of insurance or hedging it might skew the 

prediction contract prices. For example, if a market participant believed that DJIA value at the 

end of 2010 on or above 10,000 negatively influenced his wealth (because he had entered a short 

position on the DJIA), he could purchase prediction contracts to insure against this potential loss 

(Schneider-Joseph, 2004). However, in practice this criticism is valid if trades are large enough to 

achieve this effect. Data suggests that this criticism is (at the moment and for this particular 

dataset) empirically unfounded: average trade over 2010 is $49, median – $26, largest trade – 

$4004 (second largest – $1360). 
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Most of the research in the field of prediction markets forecasts concentrate on non-financial 

events: elections (Rhode & Strumpf, 2004), wars (Leigh, Wolfers, & Zitzewitz, 2003), disease 

outbreaks (Nelson, Neumann, & Polgreen, 2006). However, election prediction markets were 

very important in the US until the Second World War and “betting activity at times dominated 

transactions in the stock exchanges on Wall Street” (Rhode & Strumpf, 2004). The authors find 

that “betting odds possessed much better predictive power than other generally available 

information” (these markets predated scientific polling) – decisive victories were predicted early, 

close races were anticipated.  Furthermore, they find that betting odds were used as a source of 

information and outperformed massive non-scientific surveys, and that betting markets showed 

semi-strong market efficiency. Finally, they discuss how these markets lost popularity due to 

changes in legal environment (crackdown on organised betting and legalisation of pari-mutuel 

betting on horse races) and invention of scientific polls. 

However, prediction markets have recently made a return with the advent of electronic markets. 

Rebranded as idea futures, event futures, information markets, or decision markets, prediction 

markets expanded in their scope to include Hollywood movie predictions (Hollywood Stock 

Exchange, 2011), weather and financial data (Intrade, 2011). As markets on financial outcomes 

are increasingly available – Intrade has 8 panels of contracts (a family of contracts that are based 

on the same event, but with different outcomes, e.g. EU unemployment rate to be 7 through 18 

percent in 1 percentage point increments) on quantitative financial results – it becomes 

increasingly interesting to compare results from prediction markets and other sources. 

A Leigh, Wolfers and Zitzewitz paper (2003) on prediction markets and Iraq war deal with 

interconnections between markets in a similar case as this thesis. In particular, they analyse how 

Saddam Security (contract depending on the event “Saddam Hussein is not President/Leader of 

Iraq by [Date],” traded on TradeSports) price varies with expert opinion, oil spot price and 

futures, equity spot prices and options. They also present evidence that prediction markets, even 

though not as “thick” (well-traded) as option markets, but, for Saddam Security in 2003, as well 

traded as Iowa Electronic markets, which Berg et al. (2007) showed to be empirically robust. It is 
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not a great leap of faith to assume that since then the market volume and market participants’ 

sophistication has increased, consequently, the prediction market data should be reliable. 

The authors go on to use Saddam Security and other market data to establish various inferences 

about the effects of (at the time) potential Iraq war on oil prices and stock markets by sector and 

country in the short run and in the long run. In my opinion, these inferences are tenuous given 

that war would have multiple order effects on oil prices and stock markets, furthermore, using a 

single explanatory variable for variation of oil prices and stock prices is debatable. More detailed 

overview of research in this field can be found in Wolfers and Zitzewitz “Prediction Markets in 

Theory and Practice” (2006)  

Options markets 

Options are contracts that give the holder a right but not an obligation to buy or sell a particular 

security at a predetermined price and future date. For example, a call option on DJIA with a strike 

price of 10,000 and expiration date 2010.12.18 would give the holder a right but not an obligation 

to “buy” (options on DJIA are cash-settled – only money changes hands at expiration) DJIA at 

10,000 on 2010.12.18. If, on this day, DJIA was higher than 10,000, then the holder would 

receive income from his investment, otherwise – he would lose the money he paid for the option 

(called premium), because it would not be advantageous to exercise it. 

Black-Sholes model 

In order to discuss implied volatility in more detail, first the Black-Scholes (B-S) option pricing 

model should be presented in broad strokes. 

The whole Black & Scholes (1973) model is based on the idea of pricing the option by replicating 

it using the underlying asset and a riskless asset. In essence, the option is worth the same as a 

portfolio of assets, if the payoffs are the same. Theoretical derivation of the formula rests on this 

idea of perfect hedging. 

First, the authors of the formula present their most important assumptions: 

1. Known and constant short-term interest rate (same for borrowing and lending); 
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2. Asset return variance follows a normal distribution and has a constant variance; 

3. Stock pays no dividends (this assumption can be relaxed, but is avoided in this study 

because dividend-adjusted closing prices are used); 

4. Option is European style – it can be exercised only at expiration; 

5. There are no transaction costs of buying or selling the option or the asset; 

6. Assets are infinitely divisible; 

7. No short-selling frictions. 

Given these assumptions it is then possible to construct a hedged position, the value of which will 

depend on time and known constants: 

1. Price of the underlying asset; 

2. Strike price; 

3. Risk free rate; 

4. Time to expiration; 

5. Volatility of the underlying asset. 

Their solution to the problem of option valuation looks like this (for call options; put options can 

be valued by using the put-call parity (see part Put-call parity)): 

𝐶(𝑆, 𝑡) = 𝑁(𝑑1)𝑆 − 𝑁(𝑑2)𝐾𝑒−𝑟(𝑇−𝑡), 

𝑑1 =
ln (

𝑆
𝐾) + (𝑟 +

𝜎2

2 ) (𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
, 

𝑑2 = 𝑑1 − 𝜎√𝑇 − 𝑡, 

Equation 4 

where N() is a cumulative distribution function of the standard normal distribution, T-t – time to 

expiration, S – spot price, K – strike price, r – risk free rate (continuously compounded), σ – 

annualised volatility until expiration date of the underlying asset. 
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The most important finding in Black & Scholes study (for this thesis) is that given that the first 

four factors (price of the underlying asset, strike price, risk free rate, time to expiration) in the 

formula and the option price are observable, volatility implied by the model can be calculated. 

This is an annualised measure of how the market participants expect the asset price to vary until 

expiration of the option. 

Put-call parity 

Put-call parity was used in the discussion of the Black-Scholes formula above and will be used 

further on in the paper, therefore I think it is useful to describe the concept in short. Put-call 

parity for the modern finance (there were some earlier derivations of the parity, however, they 

were forgotten and rediscovered only recently (Hafner & Zimmermann, 2004)) was derived by 

Hans R. Stoll (1969) – the following is an overview of Stoll’s contribution. Put-call parity refers 

to the relationship between put and call prices – it is an arbitrage condition, and does not depend 

on any model of option pricing. The required conditions for put-call parity to hold are: it is 

possible to trade puts and calls, the underlying asset and earn interest. The put-call parity formula 

for European options with identical expiration dates and strike prices: 

𝐶(𝑡) − 𝑃(𝑡) = 𝑆(𝑡) − 𝐾 × 𝐵(𝑡, 𝑇), 

Equation 5 

where t is time, C(t) is call option price at time t, P(t) – put option price, S(t) – underlying asset 

price, K – strike price, B(t,T) – time t price of zero-coupon bond that pays $1 at time T. 

𝐵(𝑡, 𝑇) = 𝑒−𝑟(𝑇−𝑡), 

Equation 6 

where B(t, T) – is time t price of zero-coupon bond that pays $1 at time T, T is time to bond 

maturity, t is current period and r is the interest rate. 

In this study put-call parity will be used to calculate B-S implied volatilities (by restating 

Equation 4 to use put option prices instead of call options), and in model-free implied volatilities 

(see Equation 10). 
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Another important aspect of the put-call parity is used by Ait-Sahalia and Lo (1998) for capturing 

information in less liquid options. They use the parity to replace in-the-money call option prices 

with prices calculated using out-of-the-money put option prices, because the former are illiquid, 

while the latter are liquid. The authors explain that this way “all the information contained in 

liquid put prices has been extracted and resides in corresponding call prices via put-call parity; 

therefore, put prices may now be discarded without any loss of reliable information.” (1998) This 

method would improve the power of the analysis because more data would become available; 

however, it is not usable in this research because in order to yield good results not only strike 

prices and maturities must be matched in the parity formula, but also the time of the option 

quotes. 

Furthermore, Ait-Sahalia et al. (1998) also calculate implied index values using the put-call 

parity (see Equation 5 – S(t) is the implied index value, if the formula is supplied with call and 

put option prices (C(t) and P(t), respectively), strike price (K), and zero coupon bond price 

(B(t,T))). Using implied index values takes into account market expected dividend payments, 

which could also improve the analysis. 

Unfortunately, time of the option quotes is not available to me at this time, consequently, I cannot 

match the required put option and call option prices; this means that implied index value cannot 

be calculated and information in illiquid options cannot be replaced with information from liquid 

options. However, Jiang et al. (2005) test the robustness of their analysis and find that 

discrepancies between implied and actual index values are very small – “[t]he mean and median 

of the absolute percentage difference are 0.12 and 0.08%, respectively” (2005), moreover, the 

percentage differences are symmetrically distributed. 

B-S implied volatility 

Implied volatility literature was reviewed by Mayhew (1995), where he presents various 

algorithms and weighting schemes for calculating implied volatility using B-S. Mayhew finds 

that the best implied volatility for direct use in econometric analysis should be calculated using 

near-the-money options, because the method is as good as using all options and some weighting 

scheme. 



21 

 

On the other hand, Mayhew (1995) also reviews research on the topic of “historic volatility 

versus implied volatility”. His findings are that historical volatility is less useful than implied 

volatility for forecasting purposes, with particularly promising results (and potential results) 

showed by time-series models that incorporate both types of data for forecasting purposes. 

 

Figure 1 
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Furthermore, Mayhew discusses “the schizophrenic notion of the volatility smile” (1995). 

Volatility smile (Figure 1) refers to the empirical observation of the patterns of implied 

volatilities plotted across strike prices and times to maturity. The smile is observed when implied 

volatility (calculated using B-S model) is lowest for at-the-money options, symmetrically rising 

for out-of-the-money or in-the-money call options. Related concepts to volatility smile are 

volatility sneer and smirk – the former is a pattern when implied volatility from in-the-money call 

options is higher than for out-of-the-money; the smirk is the opposite of sneer (put options can be 

used to construct these “facial patterns” using put-call parity). Mayhew calls this a 

“schizophrenic notion” because the B-S model first assumes that volatility is constant and then is 

used to calculate different volatilities for the same asset using different strike price and exercise 

date options. Jiang et al. (2005) find that using at-the-money options to calculate implied 

volatility provides the most correlation with realised volatility and model-free implied volatility 

(discussed below). As an alternative solution to the volatility smile paradox Mayhew presents 

implied binomial tree option pricing models (discussed below). 

Fleming (1998) discusses more recent practical application of B-S implied volatility calculations. 

He analyses American style (they can be exercised at any point until maturity) options on 

S&P100 index for the period October 1985 through April 1992. His findings are that B-S 

“implied volatility is an upward biased forecast” (Fleming, 1998), which means that it could be a 

reasonably good estimate, provided a linear model corrected for the bias. Furthermore, the author 

finds that B-S volatility is a superior (to historical volatility) forecast of realised volatility. 

Fleming (1998) also discusses the underlying assumptions in greater detail. The most important 

assumption is that the market correctly forecasts the volatility of an underlying asset – this is 

corroborated by research testing forecasting accuracy of market estimates of volatility, e.g.  

Blair, Poon, and Taylor (2000) use VIX implied volatility index to test whether it correctly 

forecasts future realised volatility and find that indeed it does. Given that even B-S implied 

volatility model gives a better forecast than models based on historical volatility, we assume that 

market is better informed than econometric models and make a short leap from this to an 

assumption that market knows the “true” future volatility. Based on this assumption Fleming 
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(1998) tries to discern the market forecast through B-S implied volatility. He assumes two things: 

options market is efficient – i.e. the “true” (unbiased) forecast is revealed there, and that B-S 

model holds. These two assumptions are intertwined because the “true” forecast of asset volatility 

cannot be observed, so we try to model it; in this case – using the B-S option pricing model. 

However, the B-S model, as explained above, has numerous drawbacks – the volatility 

smile/smirk/sneer when plotted against strike prices and time to expiration; periods where 

observed option prices diverge from model predicted by more than at other times (compare B-S 

goodness-of-fit before 1987 crash and after). I try to avoid this problem by also using model-free 

implied volatility (discussed below). 

Implied binomial tree volatility 

Rubinstein (1994) developed a different approach to option pricing from the B-S model. His 

approach is to start from the market prices of options and find the risk-neutral probabilities 

equalising the outcomes and prices, then, using these probabilities, a “unique fully specified 

recombining binomial tree” (Rubinstein, 1994) is constructed. Solving the entire tree provides a 

wealth of information about the probable paths of asset prices, including the volatility. The main 

advantage of this binomial volatility is that it does not have to hold any assumed form and can 

vary over the life of an option. 

Dumas, Fleming, and Whaley (1998) examine how the binomial tree implied volatility holds up 

against B-S implied volatility and find that binomial implied volatility is very good in-sample 

(because it allows volatility function to take any form), but deteriorates when tested out of 

sample. The authors find that more parsimonious models produce lower errors out-of-sample and 

B-S implied volatility is more reliable because of its simplicity. Therefore, I do not attempt to 

replicate the implied binomial tree volatility in this research. 

Model-free implied volatility 

Britten-Jones and Neuberger (2000) present a model for extracting market forecast of volatility 

that is theoretically more general than the implied binomial tree model. The problem with 

binomial tree volatility is that, even though it is much less strict than B-S model, it still assumes 

deterministic volatility. Britten-Jones et al. (2000) describe deterministic volatility as an 
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assumption that “instantaneous volatility is a function solely of the current stock price and time 

and therefore implies that all claims can be hedged by the underlying and the riskless assets” 

(2000). They further refer to evidence that deterministic volatility is an assumption not upheld by 

empirical evidence. 

Moreover, as discussed by Jiang et al. (2005), model-free (M-F) volatility has a few other 

attractive features compared to previously commonly used B-S implied volatility. First, it does 

not require any assumptions about the option pricing model (hence, model-free). Second, M-F 

volatility calculation is based on all strike prices of the options, whereas best B-S estimates of 

implied volatility are generated based on at-the-money options (as discussed in B-S implied 

volatility). A third related advantage is that testing M-F volatility means directly testing market 

efficiency, as opposed to a joint test of a model and market efficiency. 

Britten-Jones et al. (2000) method is based on calculation of risk-neutral probabilities using the 

results derived by Breeden and Litzenberger (1978) – risk neutral density is the second order 

derivative of the call price with respect to strike price (given that it exists and the call price 

function is continuous). 

Britten-Jones et al. (2000) are quite theoretical in their approach, because it requires some data 

which is not available in the real world, e.g., continuum of strike prices from minus infinity to 

positive infinity. However, based on their work Jiang et al. (2005) describe an approach that is 

quantitatively feasible – data is available, assumptions are empirically tenable. Their solution is 

the basis for implied volatility calculations in this work and their method is presented in more 

detail in Model-free risk neutral implied volatility calculation method. 

Jiang et al. (2005) also generalise Britten-Jones et al. (2000) approach – they show that it is not 

necessary to require that stock prices follow a diffusion process (prices follow a continuous path 

with no breaks), but that the same results can be achieved even if prices follow a diffusion with 

jumps process (continuous change disrupted in some places by discontinuous breaks). 

Another very important result in the Jiang et al. (2005) paper is that they produce theoretical 

bounds of the errors arising from the actual implementation of the method. Specifically, they 
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derive formulae for truncation errors (errors arising from relaxing the requirement for strike 

prices to range from minus infinity to plus infinity) and discretization errors (numerical 

integration is the source of these errors). They also transform the original Britten-Jones et al. 

(2000) specification requiring forward prices to use spot prices of the options. 

Furthermore, Jiang et al. (2005) test their method on S&P500 index options1 (these are very 

similar options to DJX – traded on CBOE, index options, high liquidity; for more information 

please see the original paper). They calculate volatility estimates using B-S method, model-free 

and realised volatility. In this case the benchmark is the realised volatility, because it is the 

realisation of the volatility that both methods are trying to forecast. 

The authors find that both measures consistently overestimate realised volatility (this could be 

related to the fact that both forecasts assume risk-neutrality), but the relevant correlation 2 

coefficients for B-S volatility and model-free (M-F) volatility with realised volatility are 81.4% 

and 85.7% respectively. This shows that M-F volatility is a better forecast than B-S volatility, and 

further tests by the authors reveal that once M-F volatility is included in the model, B-S volatility 

becomes statistically insignificant explanatory variable. Comparing univariate regression results 

of realised volatility on B-S, M-F and lagged realised volatility, the authors find that M-F has the 

greatest explanatory power (R2 is between 73 and 74% for regressions of volatility, variance and 

logarithm of variance), followed by B-S (R2 between 60 and 64%), lagged realised volatility has 

the least explanatory power (R2 from 11 to 20%). 

Authors also test various multivariate specifications of the regression involving M-F, B-S and 

lagged realised volatility factors. Their results suggest that M-F volatility “fully subsumes 

information contained in both the B–S implied volatility and the lagged realized volatility and is a 

more efficient forecast for future realized volatility.” 

                                                 

1 Symbol: SPX 
2 Reported correlation coefficients are Pearson product-moment correlation coefficients. 
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Research problem definition 

Review of the relevant literature reveals a gap in research of prediction market financial events 

forecasts – I am unaware of research focused on empirical analysis of predictions of financial 

events. As presented in Literature review, prediction market research is mostly concerned with 

elections and other non-financial events – this is so probably because there are established 

financial markets dealing in financial predictions – options and futures markets – which are well 

researched. As a result, I believe this under-researched field is very promising because of two 

reasons: first, prediction market predictions can be compared and complemented by predictions 

generated in other markets (e.g., options); second, prediction markets at the moment are small 

relative to options markets (2010 trade values in US dollars $156 thousand versus $651 million, 

respectively), which reduces their attractiveness as a hedging instrument. Given the arguments 

discussed above, research problem – determining market predictions of future financial events in 

prediction and options markets – leads to research question “what information about future 

financial events is available in prediction and options markets.” In order to answer this question a 

few hypotheses will be tested: 

1. Stock, prediction and option market prices follow random walk. This is important because 

random walk is one of the basic indicators of market efficiency – essential assumption for 

most financial calculations. 

2. Implied volatility is an estimator of realized volatility – test whether any information is 

revealed in implied volatility. 

3. Prediction markets expect DJIA values to follow Gaussian distribution – testing whether a 

commonly used assumption (Figlewski, 1997) is shared by the market. 

Research objectives are: 

1. Calculate predicted standard deviations, implied and realised volatilities from acquired 

data; 

2. Construct and analyse probability density functions of DJIA values from prediction 

market data; 

3. Test how much information implied volatility contains about realised volatility; 
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4. Determine whether market predictions (options and prediction contracts) differ in 

available information. 

In summary, this research will contribute to understanding how information available on different 

markets can be used and whether prediction markets bring any useful new information for 

standard deviation analysis. Furthermore, this thesis aims to enhance understanding of 

relationship information available on stock markets, options markets and prediction markets – 

what the expected values of stocks at certain times are and what the distributions of these values 

are. Due to the fact that prediction markets are the least researched and the newest in this case, 

this paper will place more emphasis on them. 
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Research methodology 

This section deals with research methodology – how and what should be done to arrive to the 

goal of the thesis. First, two concepts used in the calculations are presented. Then data sources 

and main characteristics are overviewed. Third, the building blocks of the research are presented: 

how prediction market data will be analysed and what is expected to be uncovered; option market 

data analysis tools are discussed and how they will be used; and lastly – how results from 

prediction markets and option markets will be analysed to find out what information is available 

and if it is complementary.  

Probability density function and cumulative distribution function 

This part will shortly discuss the nature and concept of probability density functions and 

cumulative distribution functions because they are often used in the analysis and discussions of 

results. 

Basically, a probability density function (PDF) is a mapping of probabilities to values of a 

random variable. For example, a throw of a fair uniform die has a discrete uniform probability 

density function – each of the 6 potential outcomes has an equal probability. The situation is 

presented graphically in Figure 2 – red dots represent probabilities of different outcomes. 

Because all the outcomes are equally likely, the dots are on the same level. The information 

shown on the graph can be expressed as a function – the probability density function. 

Cumulative distribution function (CDF) is very similar to probability density function – it maps 

probabilities that a random variable will take a value equal to X or less to values of random 

variable X. For example, Figure 2 shows that the probability that a roll of a die will produce a 

three or less is equal to 50%. Actually, these two functions are two sides of the same coin – area 

under a PDF up to some X is the CDF value at X. 

It is useful to generalise from discrete cases to continuous cases because they better represent 

reality and are easier to manipulate mathematically. As discussed in part Risk-neutral 

probabilities 
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Whenever empirically calculated probabilities are referred to in this paper they are risk-neutral 

probabilities, therefore I shortly present them in this part. 

Risk-neutral probability measure assumes that investors are risk neutral with respect to return 

volatility, therefore, they optimise only risk and return trade-off. These probability measures are 

calculated by assuming that investors are risk-neutral and then finding probabilities that would 

solve for the observed asset prices – the result is risk-neutral probability . 

The problem with this assumption is that empirical research shows that investors are risk-averse. 

Consequently, the risk-neutral probability measures will underestimate the likelihood of states of 

the world where out-of-the-money options are profitable, while overestimating in-the-money 

option probability of profit. This is because risk-averse investors will be willing to pay less than 

is “fair” (fair being equal to expected value under true probability measure) for deeply out-of-the-

money options and pay more than is “fair” for options that are in the money, because of risk 

premiums attached. 

However, Jackwerth  shows that discrepancies between risk-neutral and real probabilities are 

small. 

Asset price generating process and volatility it is common to assume continuous processes 

(consequently, continuous probability density functions) when dealing with financial time series, 

even though discrete observations (discrete in time and accuracy – e.g. two significant digits for 

most prices) of financial data would suggest discrete probability density functions. However, it is 

unreasonable to assume that prices of financial assets exist only at times when they are observed 

(a transaction occurs). 

In short, probability density functions and cumulative distribution functions describe how 

probable it is for a random variable to take some value.  
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Figure 2 

Cubic spline 

Cubic splines are used in several steps of this research therefore this short section is dedicated to 

presenting the rationale behind the method and its choice. 

Historically, a spline is an engineering concept of fitting an elastic ruler over some set of points – 

this physical process is replicated mathematically. The general principle of cubic spline 

interpolation is that for two adjacent observed data points a cubic (or quadratic) function is fitted 
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so that both data points are the endpoints of the function. Further requirement is that both first 

and second order derivatives of adjacent splines at the observed data points are equal. This 

procedure ensures a smooth and continuous curve is fitted through all observed data points 

(McKinley & Levine, 1998). 

In this research I use two types of spline interpolation. First, I use monotonic smoothed quadratic 

spline interpolation (functions created by Meyer (2010)) to interpolate the cumulative distribution 

functions (CDFs). “Smoothed” means that the splines are fitted not exactly to the data points, but 

as a best fit line – balancing a smooth curve and a good fit for the data points. Monotonicity is 

required because CDFs are by definition monotonically increasing. 

Spline interpolation is also used in model-free volatility calculations (more on that further on) – 

in this case I use smoothed cubic spline method because monotonicity is not required and in order 

to reduce the number of restrictions on the shape of the function. 

Other spline interpolation methods were also tested and compared against – non-smoothed and 

non-monotonic – but were discarded because they decrease the smoothness of the curves without 

greatly improving other attributes and also sometimes create negative probability density 

functions (PDFs). 

Different interpolation methods were also evaluated but were discarded. Smoothed cubic spline 

interpolation method was chosen above piecewise constant interpolation and linear interpolation 

because of its smoothness property, which seems theoretically more reasonable than others 

(rarely do natural phenomena follow linear or non-continuous functions). Polynomial 

interpolation of higher orders (11th order polynomials would be required to interpolate the 

cumulative distribution function from prediction market data) have an unfortunate property of 

high variation between any two data points (McKinley & Levine, 1998), also known as Runge’s 

phenomenon (Fornberg & Zuev, 2006), therefore, it was also passed over. 

The fitted curve is then used to interpolate unobserved values – calculate values that were not 

directly observed in the market. 
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Data 

Sample period for this study is year 2010 – there are two reasons for this. First, a recent period is 

more interesting to analyse. Second, the choice of a sample period is constrained by available 

prediction market data because more liquid contracts are available for end of the year dates and 

they are traded somewhat often since the end of the preceding year. 

All three analysed markets are shortly presented and main data characteristics laid out later on. 

Interest rates 

Before further discussions of the markets, main interest rate data will be presented, because 

interest rates are used in various formulae. We use two main interest rates for calculations: risk-

free rate is required by the B-S model and bond rate is required by the M-F volatility calculation 

procedure. 

By definition, risk-free interest rate is the rate of interest paid on assets that have no uncertainty – 

cash flows from these assets are known with 100% certainty (Brigham & Houston, 2008). 

However, in the real world this strict condition cannot be fulfilled because all issuers of assets 

can default, therefore, we use the next best thing – assets that have as little risk as possible. 

Despite recent negative outlook, United States government is considered the most reliable debtor 

in the world due to the economy’s size, strength and historical track record of meeting obligations 

to its creditors, consequently, US short term Treasury bills are considered as a risk-free asset in 

this work. Yield on these treasury bills is a proxy for the risk-free rate. 

Figure 3 shows that the risk-free rate is quite variable. For example, 28 days rate over 2010 

varied from as low as 0.01% to as high as 0.18% - a difference of 18 times (the more relevant 360 

days rate varied from 0.2% to 0.48% - more than twice). As explained in part Black-Sholes 

model, the model assumes that risk free rate is constant; however, Figure 3 is in contradiction to 

this assumption. 
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Figure 3 

US Treasury bill secondary market yields (The Federal Reserve Board, 2011) for 1-year maturity 

will be used as the risk free rate. Secondary market was chosen because primary market yield 

publications were discontinued by the Federal Reserve Board (FRB). 1-year maturity was chosen, 

because the B-S model uses annual risk free rate in the formula, which is then adjusted for the 

time to expiration of the option. Another possible approach would be to use all available Treasury 

bill maturities – 4-week, 3-month, 6-month and 1-year maturities – to interpolate (possibly using 

cubic splines) for an exact time to option expiration, annualise this risk-free rate and use it in the 

B-S formula. This approach deals with time to maturity in a more robust way, but as time to 

expiration approaches, the annualised risk-free rate becomes more unstable due to small 

fluctuations leading to large changes when annualised. Consequently, I use 1-year maturity 

Treasury bill yield as a proxy for the risk-free rate. The data series is presented in Figure 4.  
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Figure 4 

M-F volatility calculations also require corporate bond rate due to transformation from using 

forward prices to spot prices. Given that DJIA is composed out of the best performing companies 

in the US, Moody’s Aaa corporate bond yields were chosen to represent this rate (see Figure 4, 

axis on the right). Moody’s Aaa corporate bond interest rates were acquired from the Federal 

Reserve Board website (2011). 

Risk-free rate and Moody’s corporate rate do not diverge; however, T-bill rate is much more 

volatile than the corporate bonds rate – relative standard deviation of 21% against 6%, 

respectively. Risk-free rate varies from a low of 0.2% to a high of 0.48% (average – 0.3%), 

corporate – 4.24% to 5.49% (average – 4.94%).  
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Stock market - Dow Jones Industrial Average 

Daily DJIA data was retrieved from Yahoo Finance (2011) – 252 data points – one for every 

trading day of 2010 (NYSE Euronext, 2011). Dataset contains the following data: date, opening, 

high, low and closing prices, trading volume. 

Figure 5 shows the path of DJIA adjusted closing price over 2010 – starting at 10,584 points 

DJIA ended 2010 at 11,578. There were two periods of stable growth – February to late April and 

September to year-end. Over the summer DJIA suffered relatively high “negative” volatility – 

successive decreases in DJIA price (price increases, which also increase volatility, are usually not 

associated with increased risk because they are beneficial for the investor). This happened 

possibly due to turmoil in Europe concerning the future of the Eurozone. As these worries 

declined due to determination by the EU to support the monetary union, DJIA regained strong 

growth. 
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Figure 5 

DJIA was chosen as a subject of this thesis for several important reasons. First of all, it “is the 

most-quoted market indicator in newspapers, on television and on the Internet” (CME Group 

Index Services, LLC, 2011) in the world (other widely quoted market indicators are S&P 500, 

FTSE100, NASDAQ, NIKKEI). Consequently, it is always very well traded – over the sample 

period of 2010 average daily trading volume on the composite stocks was approximately 4.6 

billion shares (Figure 6 shows how DJIA trading volume fluctuates over the sample period), 

maximum – 10.6 billion shares traded on 2010.05.06, minimum – 1.3 billion on 2010.12.22 (just 

before a major holiday, when trading usually declines (Chordia, Roll, & Subrahmanyam, 2001)). 

A further very important factor in this choice is that DJIA is available on both options market and 

predictions market. 
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According to official DJIA website (CME Group Index Services, LLC, 2011) DJIA was the first 

indicator of overall stock market – Charles Dow picked 12 stocks, added their prices and divided 

by 12. That was in 1886, a hundred years later the calculation is different. In order to “preserve 

historical continuity” (CME Group Index Services, LLC, 2011) the sum of composite stocks 

prices is divided by a divisor, which is adjusted when a stock split or a merger occurs for the 

constituent companies. This divisor is currently at 0.13212949 (one dollar change in composite 

stock price moves the whole index by 7.56833316 points (1/0.13212949)) – last (and the only 

change in 2010) change was on 2010.07.02, when “Verizon Communications Incorporated spun 

off New Communications Holdings Inc. (Spinco)” (CME Group Index Services, LLC, 2010).  

Because the purpose of this divisor is to preserve historical continuity of DJIA series, this does 

not have any impact on the analysis of the data. 

Another point of interest of the DJIA is its rebalancing strategy – new stocks are from time to 

time substituted for old stocks in the index. Consequently, out of 12 original constituents at the 

start of the index, only one company remains with the same name – General Electric (for full list 

of current constituent stocks see Appendix 1 – DJIA component stocks). Fortunately, for the 

sample in question – 1st of January, 2010, to 31st of December, 2010 – the DJIA did not change 

its composition. 

On the other hand, DJIA is not without its flaws. Most of the criticisms arise from the fact that it 

is an “average” and not an “index”. This means that the resulting figure is constructed by adding 

up all the constituent prices and dividing by the divisor (or number of constituents, as it was done 

in the beginning). While this calculation method is very simple and straightforward, its drawback 

is that if a stock A, valued at $10, increases to $11 (a 10% increase), while stock B, valued at 

$100, decreases to $99 (1% decline), the average, ceteris paribus, will remain at 55 points. This is 

undesirable, because, obviously, shares that have high nominal prices have a much greater 

influence on DJIA. For example, AIG adjusted closing stock price dropped 94% from 8th of 

September, 2008, to 27th of October, 2008, which led to an almost 3000 point drop in DJIA. 

Other strong criticism, presented by John Mauldin (2009), is concerned with the arbitrary choice 

of the composite stocks for the average. Because the stocks are chosen by a committee to 
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represent “the industrial prowess of the US economy,” they may be influenced by public opinion 

to replace “declining” companies with rapidly growing companies. Mauldin (2009) gives an 

example of Goodyear and Chevron being replaced by Microsoft and Intel in 1999 (almost at the 

peak of dot-com bubble), but then market situation changed and Chevron outperformed both 

these stocks. Analysis by Mauldin (2009) shows that if DJIA was left “as is” since 1928 (when 

DJIA grew to 30 stocks) it would have performed much better than the actual version. 

A study of the DJIA by Shoven and Sialm (2000) enumerates the three biggest flaws as: price 

weighting instead of market capitalisation weighting, arbitrary composition of the average, and 

exclusion of dividends. Two of these three flaws were discussed already; therefore, I will shortly 

explain the authors’ position on dividends in the DJIA. The authors explain that DJIA is not a 

total return index which would incorporate investor’s return from dividend payments which 

underestimates the total return from holding constituent assets of the average. Most of the 30 

constituents of the DJIA pay quarterly dividends, giving the average annual dividend yield for the 

whole life of DJIA of 4.87% (they examine period 1928 through 1999) - this is an enormous 

difference given that without accounting for dividends the average grew at around 7% annually. 

The authors find that if the dividends were added to the average to find the total return, the 

resulting DJIA value on 31st of December, 1998 would be 233,060 (also assuming value 

weighting instead of price weighting – price weighted estimate is not available in the paper) 

instead of 9,181 (as it actually was). This is a non-trivial difference – 25 times, however, in this 

research, this flaw of the average is actually an advantage, because option and prediction contract 

prices do not have to be adjusted for dividends. This is because neither option nor prediction 

contracts give the holder the right to receive dividends, so dividends are not included in the actual 

valuation of either contract. What is even more important is that because DJIA is constructed 

excluding dividend payments, its value fluctuates depending on dividend payments (DJIA price 

increases prior to dividend payment and then sharply falls by the amount of the dividend after it 

is paid). The calculation of the index without adjusting for dividends (except large dividend 

payments, which are adjusted for through the divisor – not done in 2010) increases the overall 

volatility of the average, but this should be adequately reflected in the market implied volatilities. 
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In summary, DJIA is a very liquid market indicator; however, it has flaws concerning its 

calculation, composition, and dividends. Nevertheless, the criticism that it would have been 

“outperformed” by not adjusting its composition is not important in this discussion, because a 

good market indicator is not necessarily a good portfolio. The argument about calculation is more 

worrying, however, in this case, DJIA and predictions of it are analysed, therefore, it is assumed 

that the market predictions take into account the information on the calculation problems of the 

DJIA. Moreover, the dividend calculation flaw is actually an advantage in this case. 

 

Figure 6 

Prediction market – DJIA prediction contracts 

Prediction market used in this research is operated by Intrade Inc. It is an exchange where many 

different types of prediction contracts are traded – from American Idol winners to U.S. 

presidential election nominees. 

Prediction market contracts used in this thesis are based on the realisation of Dow Jones 

Industrial Average (DJIA) value on 31st December, 2010, which were traded on Intrade 
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prediction exchange (Intrade, 2011). There was a panel of 17 contracts each concerning DJIA 

value of the form “DJIA to be on or above value X on 31st December, 2010” where X ranges 

from 7,000 to 15,000 in 500 points increments. Volume traded on these contracts over 2010 – 

19,473 contracts. 

Contracts were traded for 266 days over 2010. There is no information on trading days on the 

official Intrade website, however, from the data it appears that all days with trading activity are 

included in addition to non-holidays (according to Republic of Ireland law). Paragraphs 

Differences in data series contain more information on how differences in data series length and 

availability were resolved. 

Dataset procured from Intrade includes this data: date, contract symbol, contract id, session 

closing price, session trading volume, open interest (volume of long (short) positions – see Figure 

7). 
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Figure 7 

Out of the full list of 17 contracts, 12 contracts were selected (7,000 to 12,500) because the upper 

tail has such an undesirable property as low trading volume and, more importantly, prices 

indicating arbitrage opportunities – contract “DJIA to be on or above 15,000 on 31st December, 

2010” was sometimes more expensive than “DJIA to be on or above 14,000 on 31st December, 

2010”. This market inconsistency would make it very difficult to make inferences about market 

expectations. Furthermore, due to cost considerations, data on upper tail contracts (DJIA at 

13,000 and higher) was not purchased. 

Taking into account exclusions discussed in the previous paragraph, there are 3,183 price points 

in the data set. Further taking into account that there was very little trading happening over the 

period 2009.12.23 to 2010.01.03 (1.2% of total traded volume over 2010) and this period is less 

interesting because neither of the other datasets contains any data on this period, the data was also 
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excluded. This leaves the prediction market data set at 3,155 price points. Trading volume of 

these contracts is presented in Figure 8. 

 

Figure 8 

Finally, to show the general idea of the available data I present some market price sets 

transformed to represent cumulative distribution functions. Transformation is required because 

the contracts are formulated as “DJIA to be on or above X on the 31st of December, 2010”. The 

price for such a contract gives the probability that DJIA will be greater or equal to X 

(P(DJIA≥X)). In order to convert this measure to a more conventional way of expressing 

probability as DJIA to be smaller or equal than X (P(DJIA≤X)), I subtract the actual price (or 

probability) from 1 to arrive at the data points presented in Figure 9. 

Figure 9 shows the evolution of market probabilities over the year. Middle of the year – June to 

September – is omitted because this period exhibits significantly lower trading volumes (see 

Figure 10). This effect is probably due to holiday season (similar effect is unobservable to the 

naked eye in the DJIA data). 
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Presented figures show that (at least for these dates) prediction market prices do not violate 

boundary conditions – probabilities are strictly increasing in DJIA values. It should be noted that 

this CDF boundary condition is not always satisfied because of low trading volumes and high 

transaction costs (monetary and time-effort costs) – one of the reasons why contracts above 

12,500 were excluded was that they often did not satisfy boundary conditions. 

Figure 9 clearly shows how market becomes more and more certain of the DJIA outcome as time 

passes by – each successive CDF is steeper and steeper. Admittedly, these properties are not 

exhibited over the whole time series but, as expected, the general trend remains. 

 

Figure 9 
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Figure 10 

Options market – DJX options 

Options used in this research are based on DJIA (the underlying) – for practical purposes “the 

DJX index option contract is based on 1/100th (one one-hundredth) of the current value of the 

Dow Jones Industrial Average.” (Chicago Board Options Exchange, Inc., 2011) These options 

are traded on the Chicago Board Options Exchange (CBOE) since 1997 (this and following 

information about the options were found on official CBOE website, unless otherwise indicated). 

One of the most important features of these options is that their exercise style is European. This 

means that they can only be exercised on the expiration date as opposed to American style 

options which can be exercised at any point up to and including expiration date. This is very 

important for two reasons – first of all, pricing of these options is much simpler because the 
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model does not need to take into account “early exercise” value. Second, prediction market 

contracts are, in essence, European because they are settled based on the DJIA value at the end of 

the term, meaning that prediction and options market results can be compared. 

Data on all DJX options for the year 2010 was kindly provided free of charge by Livevol Inc. Out 

of this dataset, options expiring on the 18th of December, 2010 are used because this is the closest 

traditional option expiry date to the expiry date of prediction market contracts. It is expected that 

by using these options it will be possible to compare and draw conclusions regarding these two 

markets (10 trading days separate 2010.12.18 and 2010.12.31). DJX options expiring 18th 

December, 2010 (hereafter: DJX options or DJX) are traded at 111 strike prices – from 40 to 150 

in 1 increments (taking into account that DJX is based on 1/100th of DJIA this corresponds to 

4,000-15,000 DJIA interval in 100 point increments). 

Data available in the dataset: quote date, option type (call or put), strike, open, high, low, closing 

prices, trading volume, open interest, volume-weighted average price; and the following data at 

15:45 and end-of-the-day – bid size and price, ask size and price, underlying asset bid and ask 

prices. 

Trading volume for DJX options over 2010 is 232,5273 contracts (see Figure 11), open interest at 

the end of the option life – 133,494 (see Figure 12). Note on the trading days: options are traded 

every day DJIA is traded; however, in this particular data series there are 242 trading days 

because 10 days are “lost” due to option expiring on the 18th of December. 

                                                 

3 Options are traded in bundles of 100, so the actual number of options on the underlying is 100 times higher. 
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Figure 11 

 

Figure 12 
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Differences in data series 

As already mentioned, using three different data series for comparison creates a problem that not 

all markets are open on all dates. In this case prediction market data contains 266 trading days, 

options market – 242, stock – 252. These differences arise for two reasons: first, options and 

stock market have a 10 day difference because the relevant options are not traded over the last 10 

trading days of 2010; except this there are no other differences in trading days between these two 

series. Second, prediction market and stock market have differences because trading on the stock 

market occurs on official market trading days (NYSE Euronext, 2011), whereas prediction 

market may be traded every day but it appears that all days with trading activity are included in 

the data series in addition to non-holidays (according to Republic of Ireland law). 

I resolve this complication by using same day values of the different data series. This method 

allows comparison of values without loss of economic meaning and avoids unnecessary 

complications of interpolation. 

A further small inconvenience is caused by trading times, because options are traded in the 

United States during official trading hours (13:30 to 20:15 GMT (Chicago Board Options 

Exchange, Inc., 2011)), whereas prediction market contracts are traded around the clock. Data, 

however, shows that 79% (see Figure 13) of trading on Intrade on the contracts in question occurs 

between 12:00 and 22:00 server time (Intrade is an Irish company, which would lead to 

conclusion that its server time is based on the time zone of Republic of Ireland – GMT in winter 

and GMT+1 in summer due to daylight savings) – this roughly corresponds to CBOE trading 

hours. In short, this inconvenience is negligible, because most trading occurs simultaneously with 

options market and any news should be aggregated on a similar time scale in both markets. 
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Figure 13 

Another problem with comparing prediction and option markets arises because of differences of 

expiration date – prediction market contracts are conditional on DJIA value on the 31st of 

December, 2010, whereas options are conditional on DJIA value on the last quadruple witching 

of the year (3rd Friday of the last month of the quarter is the day when four types of options and 

index futures, namely “stock-index futures, stock-index options, stock options and single stock 

futures” (Phillips, 2010), expire; in this case it is the 18th of December, 2010). In short – 

prediction market and options market predict two slightly different values. The difference is 

small – 10 trading days – but significant close to the expiry, because, in the extreme, on the 18th 

options are settled while prediction contract settlement is still 10 days in the future. 

Prediction market 

In order to ensure that the results of this study are reliable, the prediction market contract prices 

have to follow random walk. This is first examined graphically, then appropriate stationarity tests 

are performed: Augmented Dickey-Fuller and KPSS tests. 
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Probability density function of DJIA expected values 

Given the panel of DJIA contracts it is possible to construct a frame of the cumulative 

distribution function of expectations of DJIA values. Interpolation using splines for values in 

between available market probabilities will yield data for constructing a smooth probability 

density function. In order to avoid negative probability density functions (which are, by 

definition, not possible) I use smoothed monotonic quadratic splines at this step to ensure that the 

PDFs are always non-negative. 

Smoothed cumulative distribution function can be used to numerically derive a probability 

density function in the following way. First, endpoints are defined – these will be DJIA values of 

7,000 and 12,500, because data is available for this interval. Next step is to use the fitted values 

of the quadratic spline to find values of the probability density function. I propose to do this by 

iterating the algorithm CDF (i + 1) - CDF (i) = PDF (i + 1) for i = 7001 to 12500, where CDF is 

cumulative distribution function, and PDF is probability density function. By iterating the 

aforementioned algorithm for every date in the dataset, probability density functions for every 

day are generated. 

A caveat of this method is that it is expected that due to the structure of the prediction market – 

one fixed panel of contracts for the whole year – as the „expiration“ date approaches and the 

value of DJIA approaches one particular side of the distribution (in this particular case DJIA 

ended at 11,578 points (adjusted closing price) on the 31st of December, 2010), one side of the 

distribution is „lost“, because there are only 2 contracts for values higher than 11,578 points. 

Furthermore, as the expiration date approaches, the predicted standard deviation becomes much 

more difficult to determine, because the distribution of expected values is sampled at regular 

intervals (500 points) and as it contracts (due to shorter horizon) the samples become more 

unreliable because of bid-ask spreads and other transaction costs. 

One method to determine the distributions is visual comparison to computer generated 

distributions; another option is statistical analysis by using Kolmogorov-Smirnov test. 

Kolmogorov-Smirnov test checks whether two data series were drawn from the same distribution. 

It is expected that the logarithm of DJIA expected values should either be close to Gaussian 
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distribution or, possibly, a Levy distribution (Kou, 2008). Kou (2008) suggests Levy distributions 

as an alternative to Gaussian distributions, because they allow for extreme changes in asset prices 

that are observed in the markets but are extremely unlikely if Gaussian distribution is assumed. 

However, 2010 was a relatively good year for DJIA and these extreme events were not observed, 

moreover, a short time frame makes extreme values unlikely, therefore, testing whether returns 

follow a Levy distribution would be difficult. 

Expected values and volatility 

Most interesting information that could be gleaned from prediction market data is the mean (or 

expected value) of the distribution and the standard deviation of DJIA expected value. 

These statistics will be discovered by using the previously discussed probability density 

functions. Because the probability density functions will be created from the observed data points 

using interpolation, there will be 5,500 discrete pairs of DJIA values and probabilities for every 

day of the sample. Interpolation generates these 5,500 pairs because a corresponding probability 

is calculated for every integer in the range 7,000 to 12,500. 

In order to extract the mean and standard deviation without assuming anything about the 

distribution of the expected values (nonparametrically), random sampling of the interpolated 

probability density functions will be used. To ensure that results are reliable, a probability 

weighted sample of 1,000 data points is taken without replacement to construct the standard 

deviation and mean of the distribution. 

It is expected that this analysis would produce a measure of standard deviation of the expected 

DJIA values at the maturity of the contract and mean expected value of DJIA at the end of 2010. 

However, this expected value should be equal to current DJIA value discounting influence of 

transaction costs, bid-ask spreads and time value of money. The rationale is this: if market 

participants expect DJIA to be above the current price at some certain point in the future, then 

trading would occur at the current price in order to profit from the expected price increase. The 

observation that DJIA price and DJIA prediction market expected value are highly correlated and 

similar in magnitude would indicate that the prediction market is efficient in this sense. 
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Options market 

Data selection 

Following Jackwerth (2000), out of the full dataset of option prices some of the options have to 

be omitted because reliability issues due to low volume and low sensitivity to volatility. 

Jackwerth (2000) discards options that have bids less than 1/16th and moneyness ratios 

(
strike price

DJIA level×100
) is outside the interval 0.84 to 1.12. He also excludes options that have not been 

traded during the day. 

Jiang et al. (2005) (they follow Bakshi et al. (1997) in their selections, who provide more clarity 

as to why these particular filters are required) use somewhat different filters on the option data. 

They remove options with quotes of less than 3/8ths, and options with less than a week to 

expiration. They further cull option quotes that were time-stamped later than 15:00 Central 

Standard Time (authors use time and sales data instead of closing prices), because they cannot 

match these prices to index values. Another filter the authors use is to discard in-the-money 

options – they discard call options with moneyness of less than 0.97, and put options with 

moneyness above 1.03, because these options are more expensive and less liquid. Finally, they 

remove options that violate the boundary conditions (more on these can be found in a paper by 

Galai (1978)). Out of this reduced set they pick option quotes between 14:00 and 15:00 because 

trading is usually higher during this hour than for other times of the day. 

Given these two approaches and the practical problem of small data set (I use only one option 

maturity instead of a range), I discard options based on trading volume, boundary conditions, and 

availability of risk-free interest rate (if risk-free interest rate is unavailable, then implied volatility 

calculation cannot be performed). Option has to be traded during the day, in order to use the mid-

point of the bid-ask spread in the estimation (bid-ask spread is used following Bakshi et al. 

(1997)). Before the aforementioned restrictions there were 26,973 put and call option entries 

each; after – 1,544 put option entries and 785 call (trade volume restriction reduced the numbers 

to 1,569 and 842, respectively).  
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A note on different information 

It is important to note that prediction markets and option markets reveal fundamentally different 

information about the DJIA. As discussed before, prediction markets reveal market belief about 

the distribution of DJIA values at some particular date (in this case – 2010.12.31); whereas 

options market reveals information on the asset (DJIA) price generating process. When B-S 

model is used, logarithmic returns on the DJIA are assumed to follow a normal distribution with 

some mean and standard deviation. Implied volatility is actually a measure of this deviation and 

thus is a characteristic of the asset price generating process. As previously discussed, implied 

volatility can also be calculated without assumptions about the asset price generating process. 

Furthermore, using a similar technique it should be possible to construct returns distribution but 

this is beyond the scope of this work. Using the returns distribution it is then possible to construct 

a distribution of DJIA values at some future date. Nevertheless, this thesis will not attempt this, 

but will present information that requires the least assumptions – DJIA values distribution from 

prediction market and DJIA returns standard deviation (volatility) from options market. 

Black-Scholes implied volatility 

B-S implied volatility was briefly discussed in Literature review. Here is presented the step by 

step method of deriving implied volatility in practice. 

Implied volatility can be calculated either from call or put options – the general method is the 

same, but the B-S formulae employed are slightly different. It will be assumed for ease of 

discussion that the calculations are performed on a call option. 

The first, and probably most important task, is collecting the required inputs: call price, spot price 

of the asset, strike price, time to expiry, annual risk free rate. In this particular case, all data 

except risk free rate were included in the dataset provided by Livevol Inc. Risk-free rate data 

characteristics were presented above. 

The final step is to calculate the actual implied volatility. This is done by using numerical 

optimisation methods to find the volatility that gives the lowest absolute error between actual 

option price and B-S option price. This calculation is performed in R statistical software package 
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(R Development Core Team, 2011), which uses a numerical optimisation method to find the 

implied volatility. 

Model-free risk neutral implied volatility calculation method 

The following methodology is presented in George J. Jiang and Yisong S. Tian paper The Model-

Free Implied Volatility and Its Information Content (2005). 

The authors aim to implement the Britten-Jones and Neuberger (2000) approach to model-free 

implied volatility. Their approach is to use all available strike prices and maturities in order to 

calculate implied volatility of S&P500 index, however, I will use all available (subject to 

restrictions discussed in Data selection) strike prices at only one option maturity (2010.12.18) in 

my implementation, for two reasons: first, this is the goal of this thesis – to estimate implied 

volatility for a particular horizon; second, due to lack of data given the budget of this research. 

The authors begin by restating integrated variance formula, which is the basis of all further 

analysis: 

𝐸0
𝐹 [∫ (

𝑑𝐹𝑡

𝐹𝑡
)

2𝑇

0

] = 2 ∫
𝐶𝐹(𝑇, 𝐾) − max (0, 𝐹0 − 𝐾)

𝐾2
𝑑𝐾,

∞

0

 

Equation 7 

where T is a future date, F - forward asset price (under forward probability measure), CF(T, K) – 

forward option price (under forward probability measure), K – strike price. The formula uses call 

prices, but can be simply restated to use put option prices. 

Variance (or volatility, or standard deviation) is an unobservable property of a price process, but 

it is of great interest to academics and investors alike, therefore, many techniques are available 

for its estimation and forecasting (see Andersen, Bollerslev, Diebold and Ebens (2001) for an 

outstanding example of such a study). Realised or historical variance is determined by observing 

returns at some discrete points in time and then using these observations to estimate the volatility 

of returns, however, asset prices follow continuous processes, therefore this method is only 

approximating the actual variance. Variance of the underlying continuous process is known as 
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integrated variance, market forecast of which is estimated, in this case, using market data on 

option prices. In order to be consistent, I use integrated standard deviation (square root of 

integrated variance) when estimating implied volatility. 

Implementation of Equation 7 in this form requires analytical integration which is practically not 

possible because required inputs are available only at certain points. However, a result can be 

arrived at using numerical integration, but certain errors arise. Because strike prices are available 

only for a certain interval, truncation errors occur (truncation error and other error bounds are 

derived analytically by Jiang et al. (2005)). Truncation error means that Equation 7 requires the 

integral to be evaluated in the interval of 0 to infinity with respect to strike prices, however, strike 

prices are available only in a small part of this interval. Consequently, the interval has to be 

“truncated.” 

Jiang et al. (2005) practically implement the integrated variance formula by using numerical 

integration using the trapezoidal rule: 

2 ∫
𝐶𝐹(𝑇, 𝐾) − max(0, 𝐹0 − 𝐾)

𝐾2
𝑑𝐾 ≈ ∑[𝑔(𝑇, 𝐾𝑖) + 𝑔(𝑇, 𝐾𝑖−1)]∆𝐾

𝑚

𝑖=1

,
𝐾𝑚𝑎𝑥

𝐾𝑚𝑖𝑛

 

∆𝐾 =
𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛

𝑚
 

𝐾𝑖 = 𝐾𝑚𝑖𝑛 + 𝑖∆𝐾, 𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 𝑚 

𝑔(𝑇, 𝐾𝑖) =
𝐶𝐹(𝑇, 𝐾𝑖) − max (0, 𝐹0 − 𝐾𝑖)

𝐾𝑖
2  

Equation 8 

where m is the number of intervals to approximate integration on. For a finite m (or ΔK > 0), the 

numerical integration leads to discretization errors. Discretization error, in more detail, arises 

because Equation 7 requires integration, which, in turn, requires a continuum of strike prices. 

This continuum of strike prices is not available, because strike prices are usually set in advance at 

certain convenient prices. Furthermore, as discussed in the part on data selection, many of the 
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data points are excluded on the basis of trading volume, which leads to gaps in the strike price 

continuum. Consequently, as per Equation 8, numerical integration using trapezoidal rule has to 

be used, which leads to discretization errors. Fortunately, the size of this error can be mitigated 

by using a large m at the expense of computing time and resources (I propose to use m = 100, 

because it provides reasonable accuracy – negligible differences when compared against m = 

1000 – and computational efficiency). 

Another extremely useful addition to M-F implied volatility calculations is the formula for 

substituting spot prices for forward prices (which are not as readily available as spot prices) in the 

integrated variance: 

𝐸0
𝐹 [∫ (

𝑑𝑆𝑡

𝑆𝑡
)

2𝑇

0

] = 2 ∫
𝐶 (𝑇,

𝐾
𝐵(0, 𝑇)

) − max (0, 𝑆0 − 𝐾)

𝐾2
𝑑𝐾,

∞

0

 

Equation 9 

where S is spot price, B(t, T) – is time t price of zero-coupon bond that pays $1 at time T. Interest 

rate used is the corporate interest rate (see Interest rates) – this could create an error in the 

estimate of the “underlying” process because the market could be using a different interest rate. 

Equation 6 presents the formula for the price of zero-coupon bond in continuous time – time to 

option maturity and corporate interest rate are plugged in to give the required value for 

transforming integrated variance formula from using forward prices to using spot prices. 

Equation 10 gives the full formula for integrated variance using underlying asset spot prices and 

put option prices. 
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𝐸0
𝐹 [∫ (

𝑑𝑆𝑡

𝑆𝑡
)

2𝑇

0

]

≈ ∑ [
𝑃 (𝑇,

𝐾𝑖

𝐵(0, 𝑇)
) + 𝑆0 − 𝐾𝑖 − max (0, 𝑆0 − 𝐾𝑖)

𝐾𝑖
2

𝑚

𝑖=1

+
𝑃 (𝑇,

𝐾𝑖−1

𝐵(0, 𝑇)
) + 𝑆0 − 𝐾𝑖−1 − max (0, 𝑆0 − 𝐾𝑖−1)

𝐾𝑖−1
2 ]

𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛

𝑚
 

Equation 10 

Outline of the process, where previously described formulae are used: 

1. Using B-S model calculate implied volatilities for all strike prices. 

2. Fit a smoothed cubic spline on these implied volatilities. 

3. Use B-S model on the interpolated volatilities to calculate option prices. 

4. Using Jiang et al. (2005) formula for spot prices and trapezoidal rule of numerical 

integration find expected return variance. 

It should be noted that even though this process uses B-S model in steps 1 and 2, this does not 

affect the model-free nature of the implied volatility. First the option prices are translated into B-

S implied volatilities – introducing the B-S model assumptions into the process. Next, these 

implied volatilities are interpolated to produce an equidistantly spaced and smooth implied 

volatility function. Jiang et al. (2005) explain that it is better to use cubic spline interpolation on 

implied volatilities than directly on option prices, because better fit to the actual option prices is 

achieved. Finally, implied volatilities are translated back into option prices which removes the B-

S assumptions – even though B-S model is used, it has no effect on the results. The last step of 

the process is to apply the Jiang et al. (2005) formula on the option prices to construct the model-

free implied volatility (Equation 10). 
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DJIA realised volatility 

Practical implementation 

The following method of calculating realised volatility is based on Figlewski (1997). The daily 

standard deviation σt of continuously compounded returns (calculated as rt = ln (St/St-1)) is 

calculated for the period until respective contract expiration date – 2010.12.18 for options, and 

2010.12.31 for prediction market contracts. In order to annualise the σt, it is then multiplied by 

the square root of remaining trading days in the period. This method of calculation results in a 

monotonically decreasing function of realised volatilities; furthermore, the estimates become less 

reliable as the expiration dates approach, because less and less returns are available for standard 

deviation estimation. However, this is the correct approach, because implied volatility measure is 

intended to estimate the volatility of the asset over the remaining life of the option/contract. 
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Empirical research results 

Testing for random walk 

Theoretical foundation 

Before presenting the tests for random walk on all three markets, I discuss the theoretical 

rationale for requiring random walk and the fundamental process generating random walk 

behaviour. 

Schiller and Perron (1985) describe random walk in a financial context as a process, where “price 

Pt can never be described as 'too high' (i.e., that it can be expected to fall in the future) or 'too low' 

(i.e., that it can be expected to rise in the future).” Essentially, a random walk is a time series 

process, which cannot be predicted using historical data. If we find that market prices follow a 

random walk process that means that the market is at least weak-form efficient (Fama, 1970). 

It is useful at this point to shortly describe the concept of stationarity. A very broad overview of 

this concept is provided by Nau in his lecture notes (2005). Nau (2005) describes a stationary 

process as such a time series that its properties – mean, variance, autocorrelation, etc. – do not 

change with time. Unless a process is stationary, it is difficult to construct meaningful sample 

statistics. Two types of stationarity should also be mentioned – trend-stationary and difference-

stationary processes. A process is trend-stationary if, after using the regression to remove a 

deterministic time trend, the process becomes stationary. Difference-stationary processes lose 

their non-stationary properties after taking 1st or higher order differences of the series. 

We test stationarity using two different tests: Augmented Dickey-Fuller test (henceforth, ADF) 

and Kwiatkowski-Phillips-Schmidt-Shin test (KPSS). ADF null hypothesis is that the time series 

is non-stationary, whereas KPSS null hypothesis is the opposite – series is stationary. 

There are many different expressions of the random walk process, but in this case we will define 

a random walk data point as a sum of previous random walk value and an independent identically 

distributed error. Formally this is stated as Pt+1 = Pt + εt+1, where Pt is the price (or any other 

variable) at time t and εt is the independent (does not depend on t or previous values of ε) 
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identically distributed (meaning that the distribution of errors is constant across time and prices) 

random error. Consequently, taking first differences of the series will remove the non-stationarity 

of the series. Differencing the series would reduce the previously described process to Pt+1 – Pt = 

Pt + εt+1 - Pt = εt+1 – differenced series should exhibit no autocorrelation patterns (required by 

assumption of error independence) and no deterministic trend (identically distributed errors). 

It should be noted that we do not test for random walk with drift (expressed as Pt+1 = Pt + εt+1 + 

µ, where µ is the drift parameter) explicitly, because differencing would also remove the drift 

parameter. However, based on common knowledge about stock prices, it is reasonable to assume 

that at least stock market prices follow a random walk with drift process. 

Concepts for analysis 

Autocorrelation function (ACF) is a function that shows correlation of a variable with its own 

lags. An independent random variable would not be significantly autocorrelated at any lag – 

presence of autocorrelation indicates that a relationship can be discovered. 

Partial autocorrelation function is a function similar to ACF except for one important difference – 

linear dependence of lag k + 1 on lag k is removed. 

Stock market 

Figure 5 in Research methodology shows the path of DJIA in 2010. Random walk in stock 

market prices will be analysed in three steps: stock prices, natural logarithms of stock prices and 

differences of natural logarithms of stock prices will be tested for random walk. 

First, Figure 14 panel 2 shows ACF function for the series – autocorrelation of almost one for lag 

1 and decreasing in higher lags, panel 3 shows PACF of almost 1 for lag 1; this is evidence that 

stock price at time t can be explained to a large degree by stock price at time t – 1 and PACF 

shows that lags of a higher degree have almost no explanatory power once Pt – 1 is included (blue 

dashed lines indicate 95% confidence intervals). ADF and KPSS tests are in agreement with each 

other – series is not stationary. 
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Given these ACF and PACF graphs it is not necessary to present the tests (they were performed 

but did not differ materially from previously discussed results) whether taking logarithms of 

stock prices will solve the problem of non-stationarity, therefore, we go ahead to testing whether 

logdiffs (differences of logarithms) will exhibit non-stationary behaviour. It is important to note 

that logdiffs of stock price time series are continuously compounded returns on the DJIA. 

Figure 15 presents the DJIA returns series (logdiffs) – visual observation of panel 1 shows no 

linear trend in the series (regression line superimposed on the scatter plot in red), however, the 

histogram (panel 2) suggests that returns did not follow a Gaussian distribution (at least over this 

sample period) – the peak is too high and the tails of the distribution are too wide (this is 

discussed more formally in part DJIA returns). (A short side note on kernel density (based on 

notes by Duong (2001)) – it is a density estimator which is constructed by adding up Gaussian 

PDFs (with area 1/n, where n is the number of observations) centred at the data points; the 

standard deviations of said Gaussian PDFs are determined by an optimisation process. The main 

advantage of kernel density compared to histogram is that it is a smooth function with objectively 

determined “bins”). 
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Figure 14 
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Figure 15 

We continue with analysis of random walk of logdiffs of stock prices with Figure 16. No 

autocorrelations remain in the data for any lag. Furthermore, ADF and KPSS tests concur with 

the conclusion that logdiffs of DJIA prices do not exhibit any non-stationary behaviour, therefore, 

we assume that stock prices follow a random walk and are difference-stationary. 
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Figure 16 

Prediction markets 

Similar testing for random walk was also applied to prediction market contracts – the results 

follow. 
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All 12 prediction market contracts follow random walk, so, for the purposes of clarity, a 

representative contract price will be formally tested and presented here. In particular, I have 

chosen prediction market contract stipulating that DJIA value will be less than 10,000 points at 

maturity. This contract was chosen because it is one of the more liquid contracts; therefore, it has 

more variability in prices. However, analysis shows that results are not materially different for 

the other contracts. 

Figure 18 panel 1 shows the path of the contract price over 2010 – the year was started at 50.4% 

probability that DJIA will end up lower than 10,000 by the end of the year (or price of 50.4 cents 

for 1$ contract – probability and price are used interchangeably, when talking about winner-take-

all prediction market contracts4), because at the same time DJIA was at 10,584 points. A first 

guess would predict that the contract price should have been lower, however, it must be taken 

into account that prediction market trading at this date was still very low, furthermore, transaction 

costs increased the “actual” price of the contract. Contract expired at 1%, because DJIA ended 

the year at 11,578, making this contract worthless. Transaction costs (including time) prevented 

the contract from closing even lower. 

It is also important to note that the contract does not follow DJIA values exactly but very closely, 

meaning that the prediction market contains information not contained in the DJIA; more 

information is contained over the full range of prediction contracts. For instance, correlation 

coefficient between DJIA and prediction market price is -92%, linear model of DJIA with 

contract price as explanatory variable gives adjusted R2 value of 85% (see Figure 17 for the 

scatter-plot and best-fit-line of the linear model). 

                                                 

4 See Section I for justification. 
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Figure 17 

Another important aspect of this time series is that even though prediction market contracts are 

well traded over the sum of all 12 contracts, this individual contract shows frequent “plateaus,” 

where contract price remains unchanged because of lack of trades for those dates (see Figure 18). 

This behaviour is not observed in options and stock markets except for the least liquid assets; 

whereas this contract has the highest trading volume of all 12 contracts (see Figure 8).  
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Figure 18 
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Next we examine the second and third panels of Figure 18 – autocorrelation (ACF) and partial 

autocorrelation (PACF) functions of the contract price. ACF indicates that the prices are highly 

correlated with each other (autocorrelation at lag 1 is almost 1), however, PACF being 

significantly non-zero only at lag 1 (and lag 9, but this is most likely an accident – at 95% 

significance, it is very likely for such a fluke to happen out of 24 lags) confirms the suspicion that 

autocorrelations at higher lags are only propagations of autocorrelation at lag 1 (Nau, 2005). As 

discussed above, differencing should remove the non-stationarity of the series – this is 

corroborated by ADF and KPSS tests (using ordinary least squares regression to detrend the 

process did not result in a stationary series, therefore, we discard testing for trend-stationarity). 

Figure 19 shows the results of differencing: the first panel shows the scatter plot of the 

differences (excepting cases where differences are zero, to avoid the mentioned problem of price 

“plateaus” due to lack of trading – this does not influence the results) and the line of best fit 

(linear least squares regression on index of the difference); the second panel shows the histogram 

of the differences (excluding differences exactly equal to zero makes this graph more informative 

without sacrificing much). Observing the scatter plot and the linear regression line it seems that 

no pattern remains after taking the first difference. Checking for the effect of a consistently 

downward trend of the contract price from September to year end reveals that even exclusion of 

all those data points does not change the basic shape of the histogram. 

Further testing for random walk requires ACF and PACF of differences to be examined – it is 

expected that they will not show any statistically significant autocorrelations at any lag. This 

expectation is fulfilled – evidence presented in Figure 20. 

Formal tests of random walk (ADF and KPSS tests for stationarity) support the presented 

evidence. Augmented Dickey-Fuller test uses the null hypothesis of non-stationarity and 

alternative hypothesis of stationarity. P-value for this test is less than 1% (R does not provide a 

more accurate assessment), which means that we reject the null hypothesis. KPSS is formulated 

the other way round – null hypothesis of stationarity and alternative hypothesis that the process is 

non-stationary. In this test R provides a p-value as “above 10%,” which does not allow us to 

reject the null hypothesis. 
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In summary, analysis of the prediction market prices time series shows that the prices follow a 

random walk, which is expected, considering that these are financial data. Furthermore, all 

performed tests are in agreement with each other. Also, prediction market prices are difference-

stationary. 

 

Figure 19 
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Figure 20 

Option prices 

In order to test for random walk in option prices I arbitrarily (and with the view to compare this 

to prediction market contract price) choose a well traded option roughly in the middle of the 

strike range – at a strike price of 100 (translating to 10,000 DJIA points) – volume on this option 
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over 2010 is 15,069 options. This choice provides robust results because of many observations, 

while the same random walk properties translate to other strike prices as well. 

 

Figure 21 

Figure 21 shows the path of the option price (midpoint of the bid-ask range at the end of the day) 

over 2010. Compare this to Figure 18 panel 1 – the general shape of the plot is similar. For both 



71 

 

types of contingent securities prices decline up to May, followed by a period of higher prices and 

higher volatility until September; however, option price decreases more smoothly from 

September through December – probably due to greater trading volume of the contract. All in all, 

it is encouraging to observe similar patterns in both markets, especially because both contracts 

are contingent on very similar events – DJIA to be less than 10,000 on the 18th or 31st of 

December (put option with strike 10,000 becomes valuable only if DJIA is less than that) for 

options and prediction contracts respectively. 

 

Figure 22 
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Figure 22 shows ACF and PACF graphs for the option price – they are very similar to both DJIA 

and prediction market ACF and PACF graphs. Evidence that option prices are a random walk is 

supported by both ADF and KPSS tests. 

 

Figure 23 
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Figure 23 shows ACF and PACF graphs for differenced series of the option price. ACF shows no 

predictability, meaning that future changes in option price cannot be extracted from past changes 

in price. PACF demonstrates statistically significant spikes at lags 15 and 17; however, there are 

a few reasons why these can be dismissed as statistical flukes. First, spikes are not very 

significant – just over the threshold of 5%. Second, there is no theoretical reason why lags 15 and 

17 should be important in forecasting future behaviour of option prices. Last, due to the nature of 

the time series –not traded every day – lags 15 and 17 fall randomly above the calendar interval 

of 19 and 21 days, respectively. Finally, ADF indicates that null hypothesis of non-stationarity 

should be rejected at less than 1% significance in preference of stationarity; moreover, KPSS 

does not reject stationarity (at more than 10% significance). In short, I find that option prices also 

follow a random walk. 

Summary of random walk testing 

To summarise: all three time series – stock, prediction contract and option prices – follow 

random walk and the series are difference stationary. This indicates that all three markets are 

weak-form efficient – future prices cannot be forecast using historical data and a simple model. 

Expected values 

It is probably useful at this point to take a small detour to discuss empirical evidence of 

predicting expected value of DJIA as discussed in Section III (Expected values and volatility). 

Using the presented method (and subject to noted software constraint that some of the sample 

dates are discarded due to sometimes negative PDF (because of data and interpolation)) I find 

that actual DJIA values and prediction market expected values for the contract expiry are 

correlated (correlation coefficient of 49%). Figure 24 presents the findings in a simple graph – 

the series appears to be more correlated in the second half of the sample than in the first. Some of 

the discrepancies can be explained by transaction costs associated with the “execution” of the 

contract – an investor in a contingent asset requires a positive return after transaction costs. Also 

a very important reason in this case is the time value of money – I use Moody’s Aaa interest rates 

as a proxy to make necessary adjustments, whereas the market could be using an entirely 

different interest rate. Table 1 presents the basic characteristics of both time series. 
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Table 1 

 
Observations Mean 

Standard 
deviation Median Min Max Skew Kurtosis 

DJIA actual 
value 165 10,699 425 10,680 9,686 11,499 0.05 -0.96 
Expected 
DJIA 162 10,620 378 10,751 9,738 11,268 -0.37 -1.00 
Standard 
deviation of 
E[DJIA] 162 1,094 199 1,173 506 1,309 -1.70 1.84 
Standard 
deviation of 
E[DJIA] (%) 162 10.76% 2.21% 11.62% 4.48% 13.26% -1.58 1.44 
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Figure 24 

Using the more formal method of least squares linear regression I find that current DJIA value 

explains 60% of the variation in prediction market expected DJIA value. Furthermore, current 

DJIA value is a statistically significant explanatory variable of DJIA expected value at 1% 
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significance level. If the current DJIA value and predicted DJIA value move together I also 

expect that the residuals of the regression will have a mean of zero. I test this hypothesis using 

the t-test and find that H0 hypothesis (residuals of mean zero) cannot be rejected (p-value is 

reported as 1). 

Figure 25 provides the best fit line for the data discussed; 45 degree line illustrates the negative 

bias associated with the relationship. In short, prediction market data does not provide 

information on expected DJIA values in the future due to reasons discussed in Section III. 

 

Figure 25 
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DJIA returns 

Before further discussions of volatility, I present the DJIA returns series which is the object of 

implied volatility series. As discussed before, returns are calculated as rt = ln (St/St-1), where St is 

DJIA value at time t; this method is used because it gives the continuously compounded rate of 

interest – asset prices change continuously with new information but are observed only at certain 

intervals, e.g. during trading hours. Also, as discussed in Asset price generating process and 

volatility part, the returns should be normally distributed with some mean (usually positive) and 

constant standard deviation. This is one of the assumptions of the B-S model of option pricing; 

therefore it is useful to test returns normality, because accuracy of B-S model is the basis 

calculating B-S implied volatilities.  

Figure 26 graphically presents evidence that, at least during 2010, DJIA logarithmic returns do 

not follow a normal distribution. The blue line shows how a normal distribution with the actual 

mean and standard deviation of the returns series should look like, the bar graph shows the 

histogram of the series and, finally, the red line shows kernel density (assuming Gaussian 

distribution) – essentially how the smoothed histogram would look like. It is obvious observing 

the simulated normal distribution and the kernel density graphs that returns do not follow the 

normal distribution. Also examining Q-Q plot of the returns (Figure 27) provides more evidence 

against returns normality. If the returns were indeed normally distributed, the scattered points 

would fall along the diagonal line – this is clearly not the case. I further test normality using the 

Shapiro-Wilk test (R Development Core Team, 2011): null hypothesis – sample is normally 

distributed. Test p-value is 3.831e-07, which means null hypothesis is rejected. 

Calculating the mean and standard deviation of the returns I find that they are 0.04% and 1%, 

respectively. Testing null hypothesis that the true mean is zero results in p-value of 52% - do not 

reject null hypothesis. However, even if the mean of daily logarithmic returns is equal to zero, 

this gives annualised returns of 11% (actual change over the 2010 – 9.4%). 

In summary, evidence strongly suggests that DJIA returns are not distributed normally; therefore, 

another one of the assumptions of B-S model is violated – B-S implied volatilities should not be 

used to forecast volatility. 
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Figure 26 
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Figure 27 

Standard deviations 

In this part I present the standard deviations calculated using previously described techniques. 

Note that all volatilities are calculated annualised and are matched by date for all three markets. 
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Predicted standard deviations 

Probability density functions 

Figure 28 shows the plot of the areas under the prediction market probability density functions 

(after interpolation using cubic splines) for all trading days – PDF maps the values to 

probabilities that those values will materialise. These areas show how likely it is that DJIA value 

will fall between 7,000 and 12,500 points. The red lines illustrate arbitrary cutoff points – area 

under the PDF should not be less than 0.5, because that shows that a large part of the distribution 

is outside the observed interval (7,000 to 12,500); whereas area under PDF greater than 1 

indicates problems with interpolation (contract prices are sampled at only 12 points, so there is a 

lot of leeway for PDF in between those points), because the sum of probabilities cannot be 

greater than 1. 
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Figure 28 
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Figure 29 

Figure 29 shows a sample of probability density functions for DJIA values calculated from 

February, March, May, and November values (these four months were picked because they 

include dates where trading occurred on all 12 contracts – this improves the calculations). As 

expected, the further from the prediction, the higher dispersion of the distribution. On the other 

hand, most of the PDFs are left unobserved (market contracts went up to 15,000 but the data were 
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not purchased due to low liquidity). It appears that 38% of the total probabilities are left outside 

the graphs. It can also be observed that PDFs evolve over time (Figure 29 provides 4 snapshots) 

to become more concentrated – market becomes more certain about the expected value as 

contract horizon approaches because less time is available for the price to deviate from the 

current price (this is also explained in Literature review). 

Finally, using Kolmogorov-Smirnov test for whether two data sets were drawn from the same 

distribution, I find that individual PDFs of expected DJIA values are not normally distributed 

(H0: E[DJIA] PDF follows a normal probability density function). However, this result is not 

very surprising because the Kolmogorov-Smirnov test rejects the null hypothesis even when 

testing large artificially generated samples with a known distribution. Consequently, formal 

testing does not verify that expected DJIA values follow a normal distribution (lognormal – even 

less so). 

Predicted standard deviations 

Figure 30 shows time series of standard deviations of the expected values of DJIA on 2010.12.31.  

This is a nonparametric estimate of how the market believes the DJIA expected values to be 

spread out. Naturally, the further away the forecast horizon, the less market is certain of the 

expected value – the higher the dispersion of expectations. Surprisingly, the standard deviation 

fluctuates at a stable level of around 12% (using absolute standard deviation does not yield 

materially different results), and then suddenly drops as the expiration date approaches. This is 

most likely associated with a large increase in prediction market trading volume (see Figure 10). 

Table 1 shows that the average predicted standard deviation over the whole sample is 10.8% 

(median is 11.6% - skewness due to dramatic fall in standard deviation in October). In short, the 

standard deviation of DJIA expected values predicted by prediction markets is quite stable over 

the sample period. 
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Figure 30 

Implied volatility 

Implied volatility was calculated using two different methods – Black-Scholes formula and 

model-free volatility method. I first present these two volatility measures separately, then I 

analyse them together. 
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Table 2 

 
Observations Mean 

Standard 
deviation Median Min Max Range Skew 

DJIA 252 10,669 460 10,627 9,686 11,585 1,899 0.13 
DJIA log 
returns 252 0.04% 1.02% 0.07% -3.67% 3.82% 7.49% -0.18 
Realised 
volatility 252 9.61% 4.98% 9.74% 0.00% 16.16% 16.16% -0.30 
M-F implied 
volatility 
(puts) 174 13.66% 7.02% 13.70% 0.00% 32.96% 32.96% 0.08 
M-F implied 
volatility (calls) 88 9.37% 5.70% 7.77% 0.00% 26.43% 26.43% 1.15 
B-S implied 
volatility (puts) 236 22.25% 4.86% 22.32% 1.53% 41.95% 40.42% -0.12 
B-S implied 
volatility (calls) 192 16.72% 3.56% 16.21% 0.03% 28.20% 28.18% -0.09 

Table 2 presents general descriptive statistics of DJIA, DJIA logarithmic returns and calculated 

volatilities. Implied volatility series have fewer observations because I require trading to calculate 

implied volatility (see Data selection) – this is most apparent on M-F volatilities calculated from 

call options because they rarely traded, therefore they have few traded strike prices per day; M-F 

volatility cannot be estimated without at least 4 traded options on a particular day (due to 

interpolation method), which leads to greatly smaller number of observations (B-S implied 

volatility can be calculated from one traded option). 

B-S volatility 

Figure 31 shows implied volatility measures calculated using B-S model on at-the-money options 

from put and call options, respectively. It is apparent that the two measures give significantly 

different implied volatilities, e.g. correlation coefficient for put and call implied volatilities is 

56% (after eliminating non-paired observations). Combining these two measures by taking some 

average would lead to unpredictable results; therefore henceforth B-S implied volatility will be 

calculated using put options. Put options are used in preference to call options because they are 

better traded – more liquid market and more dates with trades. 
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Figure 31 

M-F volatility 

M-F implied volatility evolution over 2010 is plotted in Figure 32. Again, as in B-S graph (Figure 

31), calculations based on puts and calls produce different results (e.g. correlation coefficient for 

put and call implied volatilities is 27%) which are, nevertheless, similar in magnitude (33% and 

26% maximum implied volatilities for puts and calls, respectively). However, it is again apparent 

that M-F volatilities from puts are superior to calls, because of more puts data and less dispersion 

(this is desirable, because it can be argued that “real” implied volatility should not fluctuate 

greatly from day to day). Consequently, I discard implied volatility data calculated from call 

options (both B-S and M-F) and focus further analysis on put option information. 
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Figure 32 

B-S and M-F volatilities 

In order to compare like-for-like, Figure 33 shows the previously discussed put options graphs 

side by side. Visual observation shows that B-S implied volatility is higher than M-F estimates 

(contrary to Jiang and Tian (2005), however, they make adjustments to the series to account for 

known biases). 
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Figure 33 

The same information is presented in a single graph (Figure 35) – the relationship between M-F 

and B-S volatilities is even more apparent. Excluding the period until June, 2010 (not enough 

data for M-F volatility calculations, because at least 4 distinct traded options are required to 

calculate M-F volatility – this is required cubic spline interpolation method), both series follow 

very similar trajectories, but B-S implied volatility is higher. 

Realised volatility is also shown in the graph – it converges with the M-F implied volatility at the 

end of the series. Furthermore, and more interestingly, implied volatilities and realised volatility 

consistently converge through the period – this could indicate higher risk premiums for events 

further in the future. 

Figure 34 shows a scatterplot diagram of M-F implied volatilities plotted against B-S implied 

volatilities (even though the series exhibit exponential behaviour, taking logarithms decreases the 

fit of the model) and also the best-fit-line for the data. Adjusted R2 for this model is 57% 

indicating quite high but not perfect co-movement of implied volatilities, correlation coefficient 

is 76%. 



89 

 

 

Figure 34 

Analysing the data more formally, I find that realised volatility and B-S volatility correlation 

coefficient is 50%, whereas realised and M-F volatilities are correlated at 90% - this suggests that 

M-F volatility should be a better indicator of volatility. 
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Figure 35 

Regressions of volatilities 

Regressing realised volatility on various combinations of implied volatilities I find some 

interesting results. The main characteristics of the models are presented in Table 3. 
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Table 3 

Model name 
 

Degrees 
of 
freedom Intercept 

M-F IV 
(puts) 

B-S IV 
(puts) 

M-F IV 
(calls) 

B-S IV 
(calls) 

Adjusted 
R2 

F Estimate 78 0.0548 0.6911 0.2640 -0.0099 -0.6917 79.9% 

  
Standard 
error   0.0097 0.0642 0.1302 0.0322 0.1574   

  p-value   0.0000 0.0000 0.0459 0.7587 0.0000   
F- Estimate 147 0.0443 0.6200 0.0774   -0.3592 84.6% 

  
Standard 
error   0.0070 0.0336 0.0807   0.0808   

  p-value   0.0000 0.0000 0.3391   0.0000   

P Estimate 171 0.0351 0.6442 
-

0.1770     81.5% 

  
Standard 
error   0.0075 0.0310 0.0462       

  p-value   0.0000 0.0000 0.0002       
P.M-F Estimate 172 0.0091 0.5542       80.0% 

  
Standard 
error   0.0032 0.0211         

  p-value   0.0053 0.0000         
C Estimate 85 -0.0207     0.0056 0.5038 24.9% 

  
Standard 
error   0.0152     0.0650 0.0957   

  p-value   0.1757     0.9321 0.0000   
C.B-S Estimate 190 0.0631       0.1713 1.2% 

  
Standard 
error   0.0160       0.0938   

  p-value   0.0001       0.0693   

P.M-F.C.B-S Estimate 148 0.0470 0.6421     -0.2947 84.6% 

  
Standard 
error   0.0064 0.0244     0.0448   

  p-value   0.0000 0.0000     0.0000   

Table 3 explanation 

Table 3 shows linear model fitting results where realised volatility is a dependent variable and 

various combinations of implied volatilities (IV in the table) are explanatory variables. Reported 

in this table are estimates of the regression coefficients, their standard errors, p-values 

(probability that true regression coefficient is actually 0, given observed values), degrees of 

freedom of the model (number of observations minus the number of explanatory variables and 
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intercept), and the adjusted R2 – how much of variability in dependent variable is explained by 

the explanatory variables, adjusted for the number of regressors. 

The models are named in order to facilitate easier exposition: model F is the “full” model – 

realised volatility regressed on all implied volatility measures, model F- – same as model F, but 

M-F implied volatility from call options is excluded, model P – implied volatilities from put 

options are used as regressors, model P.M-F – single explanatory variable – M-F implied 

volatility calculated from put options, model C – regressors are implied volatilities calculated 

from call options, finally, model C.B-S is using B-S implied volatility as an explanatory variable. 

It is interesting to note that most of the p-values are near zero, consequently, the only statistically 

not significant regression coefficients were marked in red (5% significance level was used 

according to convention). Most other coefficients are significant even at 1% significance (except 

B-S implied volatility coefficient in model F). 

Discussion of regression results 

Degrees of freedom of the regressions show that there is a sufficient amount of data points for the 

regressions (it is usually accepted that at least 30 degrees of freedom are required for hypothesis 

testing – central limit theorem to hold (Smith & Wells, 2006)) – minimum degrees of freedom is 

78. The “bottleneck” in this case is M-F implied volatility series from call options (as explained 

in part Implied volatility). Moreover, out of the two reported models, which include M-F implied 

volatility from calls (F and C models), the volatility is not statistically significant. This in part 

justifies the decision to use put options for implied volatility estimations. Another consequence of 

omitting data points where at least one regressor has no value is that it becomes difficult to 

compare regression results. For example, models C and C.B-S give different regression 

coefficients for B-S implied volatility, because model C uses 88 observations, whereas C.B-S 

uses 192; furthermore, for the same reason model C gives R2 of 25%, whereas C.B-S – 1% 

(correcting for the change in number of observations I find that C.B-S R2 would be 26% for the 

same 88 observations as in model C).  
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Model F achieves a high adjusted R2 value – 80% of variation in realised volatility is explained 

by the different measures of volatility, however, this model includes a statistically insignificant 

parameter (M-F implied volatility from calls) – it should be made more parsimonious. Dropping 

the parameter gives model F- (R2 increases to 85%) which also has almost twice as many degrees 

of freedom. The increase in the number of observations also increases the fit of the model (R2 

after adjusting for change in the number of observations is actually the same for F and F-), 

meaning that M-F implied volatility from calls is actually a useless explanatory variable, because 

it is not significant and reduces the number of available observations. 

Comparing models P and P.M-F is very illuminating, because I find that dropping B-S implied 

volatility reduces the fit of the model by a small amount (R2 change - 1%), but the model 

becomes more parsimonious. This indicates that B-S implied volatility from puts could be 

dropped from the regression without much loss – information from put options is almost fully 

subsumed by M-F implied volatility – B-S implied volatility adds only a little. 

The best fit is provided by P.M-F.C.B-S model (realised volatility regressed on M-F implied 

volatility from puts and B-S implied volatility from calls). However, this model presents a 

theoretical problem – explaining negative regression coefficients of implied volatilities is 

theoretically difficult – there are no apparent reasons why higher B-S implied volatility should 

reduce realised volatility when the other independent variable is M-F implied volatility. 

Following Jiang et al. (2005), if any calculated implied volatility estimate was an unbiased 

estimator of realised volatility, then intercept would be equal to zero and the regression 

coefficient of that regressor would be equal to 1. The formal Chi-square hypothesis tests results 

are not presented here because looking at Table 3 it is obvious that none of the regressors even 

comes close to being equal to 1, therefore, it is impractical to present test results on two 

parameters. 

None of the regressions yield an unbiased estimator of realised volatility; however, the objective 

of this part is to investigate information available on the options market – not find the best 

method to forecast realised volatility. I conclude that the best source of information about future 
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volatility is the model-free implied volatility because (a) it achieves a high degree of fit (80%), 

(b) the fitting model is parsimonious, and (c) most importantly – it does not rely on model 

assumptions. 

Overview of available information 

As presented above, two distinct and useful forecasts of the stock market emerge when prediction 

markets and option markets are examined. First, it is the standard deviation of DJIA expected 

values – a unique straightforward measure of dispersion of future values of DJIA. Second, option 

markets allow the extraction of DJIA returns volatility. Both estimates are nonparametric (B-S 

implied volatility is used as a benchmark for M-F performance), which allows testing various 

hypotheses using this information without testing the models used to calculate these estimates. 
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Discussion 

In summary, I find that all analysed markets – stock, prediction, and options – are “well-

behaved”, i.e. asset prices follow random walk. Building on that foundation I use prediction 

market data to calculate expected DJIA values and standard deviation of those expected values. 

Analysis shows that expected values differ from current DJIA values, but that is probably a result 

of transaction costs and time value of money. I also find that expected DJIA values do not follow 

normal or lognormal distributions. Finally, standard deviation of the expected values is quite 

stable for most of the sample period, but drops abruptly as forecast horizon approaches. 

Using techniques developed by Jiang et al. (2005) I also calculate Black-Scholes and model-free 

implied volatilities and test them for explanatory power of realised volatility. Even though none 

of the tested models provides an unbiased estimate of the realised volatility, I find that they have 

quite good explanatory power – up to 85%. I conclude that nonparametric implied volatility 

calculation is the best estimator for future volatility. On the other hand, Jiang et al. (2005) results 

from M-F implied volatilities and my findings are somewhat different, for instance, the authors 

find much higher regression coefficients for regressions of realised volatility on implied volatility 

(M-F and B-F). Of course, the authors use much shorter forecasting horizons, different realised 

volatility measures and more data. Also, their sample is pre-financial crisis which could have 

influenced investors’ behaviour, consequently influencing my results.  

This research is the first to use prediction market data to estimate market sentiment on future 

stock market realisations. It should add to the theoretical studies of available information on 

prediction markets (Wolfers & Zitzewitz, 2004) and bridge the gap to studies focusing on 

information in options markets (Jiang & Tian, 2005). 

A further avenue of study could be to use Ait-Sahalia et al. (1998) approach to estimate DJIA 

returns PDFs and, assuming constant returns distribution, estimate the same DJIA expected 

values PDF as calculated from prediction markets. These two distributions could then be 

compared to gain further insights into asset prices and processes driving them. 
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A simpler investigation would be to test if financial outcomes are predicted as well as election 

results ( (Berg, Nelson, & Rietz, 2007); (Rhode & Strumpf, 2004)), however, this investigation 

needs much more data and, preferably, increased prediction market liquidity. Furthermore, this 

investigation could be expanded to use more prediction market data – markets are also available 

for monthly forecast horizons and annual forecasts for previous years. 

The shortfalls of this thesis are numerous, but they do not substantially affect the proof-of-

concept nature of this paper. First, dividend payments should be included in the analysis – this 

can be done by calculating implied index values, which take into account market belief about 

future dividends (this approach is based on Ait-Sahalia et al. (1998)), by observing paid out 

dividends and integrating them ex post into the analysis, or by using historical dividend yield to 

adjust. Furthermore, higher quality data would greatly improve potential avenues for analysis – 

quote-level data for options would allow incorporation of more information into model-free 

volatility calculations (as per Jiang et al. (2005)), whereas quote-level data (or intraday 

observations) of stock prices would greatly improve realised volatility estimate (Andersen, 

Bollerslev, Diebold, & Ebens, 2001). 

A further improvement that could be implemented with more data is the method – proposed by 

Christensen et al. (2001) – to avoid the problem of telescoping data which could cause some 

problems with regressions. 
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Conclusion 

The aim of the thesis was to improve the understanding of available information on different 

markets with regard to equities, therefore, research problem was formulated – determine market 

predictions of future financial events from options and predictions market data. The problem was 

solved through calculation of DJIA expected values probability density functions from prediction 

markets and Black-Scholes and model-free implied volatilities from options markets. 

Reiterating the previously tested hypotheses results: 

1. All three market prices follow random walk; 

2. Implied volatility is a good if biased estimator of realised volatility; 

3. DJIA expected values do not appear to follow Gaussian distribution; 

The main result of the empirical work was to show that it is possible to use prediction market 

data to construct the DJIA expected values PDF, also, following Jiang et al. (2005) model-free 

implied volatility was calculated for the DJIA. Even though the model-free implied volatility did 

not fully correspond with the Jiang et al. (2005), it is still a step forward in directly comparing 

information extracted from the two markets. 

The goal of the thesis was achieved to some extent, however, this proof-of-concept can be greatly 

improved if previously discussed shortcomings are corrected and investigation expanded to take 

into account suggested improvements. 
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Appendix 1 – DJIA component stocks 

Ticker  Company Name 

MMM 3M Company 

AA Alcoa Incorporated 

AXP American Express Company 

T AT&T Incorporation 

BAC Bank of America Corporation 

BA Boeing Company 

CAT Caterpillar Incorporated 

CVX Chevron Corporation 

CSCO Cisco Systems, Inc. 

KO Coca-Cola Company 

DD E.I. DuPont de Nemours & Company 

XOM Exxon Mobil Corporation 

GE General Electric Company 

HPQ Hewlett-Packard Company 

HD Home Depot Incorporated 

INTC Intel Corporation 

IBM International Business Machines Corporation 

JNJ Johnson & Johnson 

JPM JPMorgan Chase & Company 

KFT Kraft Foods Incorporated Cl A 

MCD McDonald's Corporation 

MRK Merck & Co. Incorporated 

MSFT Microsoft Corporation 

PFE Pfizer Incorporated 

PG Procter & Gamble Company 

TRV Travelers Companies, Inc. 

UTX United Technologies Corporation 

VZ Verizon Communications Incorporated 

WMT Wal-Mart Stores Incorporated 

DIS Walt Disney Company 

 


